Curvature Blow-up in Doubly-warped Product Metrics Evolving by Ricci Flow (Memoirs of the American Mathematical Society)

Curvature Blow-up in Doubly-warped Product Metrics Evolving by Ricci Flow (Memoirs of the American Mathematical Society)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 153 p.
  • 言語 ENG
  • 商品コード 9781470468767
  • DDC分類 516.362

Full Description

For any manifold Np admitting an Einstein metric with positive Einstein constant, we study the behavior of the Ricci flow on high-dimensional products M = Np x Sq+1 with doubly warped product metrics. In particular, we provide a rigorous construction of local, type II, conical singularity formation on such spaces. It is shown that for any k > 1 there exists a solution with curvature blow-up rateRm ∞ (t) (T ? t)?k with singularity modeled on a Ricci-flat cone at parabolic scales.

Contents

Chapters
1. Introduction
2. Setup and preliminaries
3. The initial data and the topological argument
4. Pointwise estimates
5. No inner region blow-up
6. Coefficient estimate
7. Short-time estimates
8. Long-time estimates
9. Scalar curvature behavior
A. Analytic facts
B. Constants

最近チェックした商品