A Cornucopia of Quadrilaterals (Dolciani Mathematical Expositions)

個数:
  • ポイントキャンペーン

A Cornucopia of Quadrilaterals (Dolciani Mathematical Expositions)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 304 p.
  • 言語 ENG
  • 商品コード 9781470453121
  • DDC分類 516.154

Full Description

A Cornucopia of Quadrilaterals collects and organizes hundreds of beautiful and surprising results about four-sided figures--for example, that the midpoints of the sides of any quadrilateral are the vertices of a parallelogram, or that in a convex quadrilateral (not a parallelogram) the line through the midpoints of the diagonals (the Newton line) is equidistant from opposite vertices, or that, if your quadrilateral has an inscribed circle, its center lies on the Newton line. There are results dating back to Euclid: the side-lengths of a pentagon, a hexagon, and a decagon inscribed in a circle can be assembled into a right triangle (the proof uses a quadrilateral and circumscribing circle); and results dating to Erdos: from any point in a triangle the sum of the distances to the vertices is at least twice as large as the sum of the distances to the sides. The book is suitable for serious study, but it equally rewards the reader who dips in randomly. It contains hundreds of challenging four-sided problems. Instructors of number theory, combinatorics, analysis, and geometry will find examples and problems to enrich their courses. The authors have carefully and skillfully organized the presentation into a variety of themes so the chapters flow seamlessly in a coherent narrative journey through the landscape of quadrilaterals. The authors' exposition is beautifully clear and compelling and is accessible to anyone with a high school background in geometry.

Contents

Simple quadrilaterals
Quadrilaterals and their circles
Diagonals of quadrilaterals
Properties of trapezoids
Applications of trapezoids
Garfield trapezoids and rectangles
Parallelograms
Rectangles
Squares
Special quadrilaterals
Quadrilateral numbers
Solutions to the Challenges
A quadrilateral glossary
Credits and permissions
Bibliography
Index.

最近チェックした商品