Irreducible Geometric Subgroups of Classical Algebraic Groups (Memoirs of the American Mathematical Society)

Irreducible Geometric Subgroups of Classical Algebraic Groups (Memoirs of the American Mathematical Society)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 88 p.
  • 言語 ENG
  • 商品コード 9781470414948
  • DDC分類 512.5

Full Description

Let $G$ be a simple classical algebraic group over an algebraically closed field $K$ of characteristic $p \ge 0$ with natural module $W$. Let $H$ be a closed subgroup of $G$ and let $V$ be a non-trivial irreducible tensor-indecomposable $p$-restricted rational $KG$-module such that the restriction of $V$ to $H$ is irreducible. In this paper the authors classify the triples $(G,H,V)$ of this form, where $H$ is a disconnected maximal positive-dimensional closed subgroup of $G$ preserving a natural geometric structure on $W$.

Contents

Introduction
Preliminaries
The $\mathcal{C}_1, \mathcal{C}_3$ and $\mathcal{C}_6$ collections
Imprimitive subgroups
Tensor product subgroups, I
Tensor product subgroups, II
Bibliography

最近チェックした商品