Stochastic Approaches for Systems Biology

個数:

Stochastic Approaches for Systems Biology

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 290 p./サイズ 73 illus.
  • 言語 ENG
  • 商品コード 9781461404774
  • DDC分類 519

基本説明

This textbook focuses on stochastic modelling and its applications in systems biology. In addition to a review of probability theory, the authors introduce key concepts, including those of stochastic process, Markov property, and transition probability, side by side with notions of biochemical reaction networks. This leads to an intuitive presentation guided by a series of biological examples that are revisited throughout the text. The text shows how the notion of propensity, the chemical master equation and the stochastic simulation algorithm arise as consequences of the Markov property. The nontrivial relationships between various stochastic approaches are derived and illustrated. The text contains many illustrations, examples and exercises to communicate methods and analyses. Matlab code to simulate cellular systems is also provided where appropriate and the reader is encouraged to experiment with the examples and case studies provided. Senior undergraduate and graduate students in applied mathematics, the engineering and physical sciences as well as researchers working in the areas of systems biology, theoretical and computational biology will find this text useful.

Full Description

This textbook focuses on stochastic analysis in  systems biology  containing both the theory and application. While the authors provide a review of probability and random variables, subsequent notions of biochemical reaction systems and the relevant concepts of probability theory are introduced side by side. This leads to an intuitive and easy-to-follow presentation of stochastic framework for modeling subcellular biochemical systems. In particular, the authors make an effort to show how the notion of propensity, the chemical master equation and the stochastic simulation algorithm arise as consequences of the Markov property.

 

The text contains many  illustrations, examples and exercises to illustrate the ideas and methods that are introduced. Matlab code is also provided where appropriate. Additionally, the cell cycle is  introduced as a more complex case study.

 

Senior undergraduate and graduate students in mathematics and physics as well as researchers  working in the area of systems biology, bioinformatics and related areas will find this text useful.

Contents

Preface.-  Acknowledgements.- Acronyms, notation.- Matlab functions, revisited examples.- Introduction.- Biochemical reaction networks.- Randomness.- Probability and random variables.- Stochastic modeling of biochemical networks.- The 2MA approach.- The 2MA cell cycle model.- Hybrid Markov processes.- Wet-lab experiments and noise.- Glossary

最近チェックした商品