Introduction to Shannon Sampling and Interpolation Theory (Springer Texts in Electrical Engineering) (Reprint)

個数:

Introduction to Shannon Sampling and Interpolation Theory (Springer Texts in Electrical Engineering) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 337 p.
  • 言語 ENG
  • 商品コード 9781461397106
  • DDC分類 621

Full Description

Much of that which is ordinal is modeled as analog. Most computational engines on the other hand are dig- ital. Transforming from analog to digital is straightforward: we simply sample. Regaining the original signal from these samples or assessing the information lost in the sampling process are the fundamental questions addressed by sampling and interpolation theory. This book deals with understanding, generalizing, and extending the cardinal series of Shannon sampling theory. The fundamental form of this series states, remarkably, that a bandlimited signal is uniquely specified by its sufficiently close equally spaced samples. The contents of this book evolved from a set of lecture notes prepared for a graduate survey course on Shannon sampling and interpolation theory. The course was taught at the Department of Electrical Engineering at the University of Washington, Seattle. Each of the seven chapters in this book includes a list of references specific to that chapter. A sequel to this book will contain an extensive bibliography on the subject. The author has also opted to include solutions to selected exercises in the Appendix.

Contents

1 Introduction.- 1.1 The Cardinal Series.- 1.2 History.- 2 Fundamentals of Fourier Analysis and Stochastic Processes.- 2.1 Signal Classes.- 2.2 The Fourier Transform.- 2.3 Stochastic Processes.- 2.4 Exercises.- 3 The Cardinal Series.- 3.1 Interpretation.- 3.2 Proofs.- 3.3 Properties.- 3.4 Application to Spectra Containing Distributions.- 3.5 Application to Bandlimited Stochastic Processes.- 3.6 Exercises.- 4 Generalizations of the Sampling Theorem.- 4.1 Generalized Interpolation Functions.- 4.2 Papoulis' Generalization.- 4.3 Derivative Interpolation.- 4.4 A Relation Between the Taylor and Cardinal Series.- 4.5 Sampling Trigonometric Polynomials.- 4.6 Sampling Theory for Bandpass Functions.- 4.7 A Summary of Sampling Theorems for Directly Sampled Signals.- 4.8 Lagrangian Interpolation.- 4.9 Kramer's Generalization.- 4.10 Exercises.- 5 Sources of Error.- 5.1 Effects of Additive Data Noise.- 5.2 Jitter.- 5.3 Truncation Error.- 5.4 Exercises.- 6 The Sampling Theorem in Higher Dimensions.- 6.1 Multidimensional Fourier Analysis.- 6.2 The Multidimensional Sampling Theorem.- 6.3 Restoring Lost Samples.- 6.4 Periodic Sample Decimation and Restoration.- 6.5 Raster Sampling.- 6.6 Exercises.- 7 Continuous Sampling.- 7.1 Interpolation From Periodic Continuous Samples.- 7.2 Prolate Spheroidal Wave Functions.- 7.3 The Papoulis-Gerchberg Algorithm.- 7.4 Exercises.

最近チェックした商品