High-Level Power Analysis and Optimization

個数:

High-Level Power Analysis and Optimization

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 175 p.
  • 言語 ENG
  • 商品コード 9781461374817
  • DDC分類 621

Full Description

High-Level Power Analysis and Optimization presents a comprehensive description of power analysis and optimization techniques at the higher (architecture and behavior) levels of the design hierarchy, which are often the levels that yield the most power savings. This book describes power estimation and optimization techniques for use during high-level (behavioral synthesis), as well as for designs expressed at the register-transfer or architecture level.
High-Level Power Analysis and Optimization surveys the state-of-the-art research on the following topics: power estimation/macromodeling techniques for architecture-level designs, high-level power management techniques, and high-level synthesis optimizations for low power.
High-Level Power Analysis and Optimization will be very useful reading for students, researchers, designers, design methodology developers, and EDA tool developers who are interested in low-power VLSI design or high-level design methodologies.

Contents

1. Introduction.- 1.1 Low power design.- 1.2 Design abstraction and levels of the design hierarchy.- 1.3 Benefits of high-level power analysis and optimization.- 1.4 Book overview.- 2. Background.- 2.1 Sources of power consumption.- 2.2 Methods for reducing power and energy consumption.- 2.3 High-level design techniques.- 2.4 High-level synthesis application domains.- 3. Architecture-Level Power Estimation.- 3.1 Analytical power models.- 3.2 Characterization based activity and power macromodels.- 3.3 Power and switching activity estimation techniques for control logic.- 3.4 Conclusions.- 4. Power Management.- 4.1 Clock-based power management: Gated and multiple clocks.- 4.2 Pre-computation.- 4.3 Scheduling to enable power management.- 4.4 Operand isolation.- 4.5 Power management through constrained register sharing.- 4.6 Controller-based power management.- 4.7 Conclusions.- 5. High-Level Synthesis For Low Power.- 5.1 Behavioral transformations.- 5.2 Module selection.- 5.3 Resource sharing.- 5.4 Scheduling.- 5.5 Supply voltage vs. switched capacitance trade-offs.- 5.6 Optimizing memory power consumption during high-level synthesis.- 5.7 Reducing glitching power consumption during high-level design.- 5.8 Conclusions.- 6. Conclusions And Future Work.- References.

最近チェックした商品