Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities (Nonconvex Optimization and Its Applications)

個数:

Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities (Nonconvex Optimization and Its Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 310 p.
  • 言語 ENG
  • 商品コード 9781461368205
  • DDC分類 515

Full Description

Boundary value problems which have variational expressions in form of inequal­ ities can be divided into two main classes. The class of boundary value prob­ lems (BVPs) leading to variational inequalities and the class of BVPs leading to hemivariational inequalities. The first class is related to convex energy functions and has being studied over the last forty years and the second class is related to nonconvex energy functions and has a shorter research "life" beginning with the works of the second author of the present book in the year 1981. Nevertheless a variety of important results have been produced within the framework of the theory of hemivariational inequalities and their numerical treatment, both in Mathematics and in Applied Sciences, especially in Engineering. It is worth noting that inequality problems, i. e. BVPs leading to variational or to hemivariational inequalities, have within a very short time had a remarkable and precipitate development in both Pure and Applied Mathematics, as well as in Mechanics and the Engineering Sciences, largely because of the possibility of applying and further developing new and efficient mathematical methods in this field, taken generally from convex and/or nonconvex Nonsmooth Analy­ sis. The evolution of these areas of Mathematics has facilitated the solution of many open questions in Applied Sciences generally, and also allowed the formu­ lation and the definitive mathematical and numerical study of new classes of interesting problems.

Contents

Preface. 1. Elements of Nonsmooth Analysis. Hemivariational Inequalities. 2. Nonsmooth Critical Point Theory. 3. Minimax Methods for Variational-Hemivariational Inequalities. 4. Eigenvalue Problems for Hemivariational Inequalities. 5. Multiple Solutions of Eigenvalue Problems for Hemivariational Inequalities. 6. Eigenvalue Problems for Hemivariational Inequalities on the Sphere. 7. Resonant Eigenvalue Problems for Hemivariational Inequalities. 8. Double Eigenvalue Problems for Hemivariational Inequalities. 9. Periodic and Dynamic Problems.

最近チェックした商品