Computational Algorithms for Fingerprint Recognition (International Series on Biometrics)

個数:

Computational Algorithms for Fingerprint Recognition (International Series on Biometrics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 191 p.
  • 商品コード 9781461351030
  • DDC分類 006.4

Full Description

Biometrics such as fingerprint, face, gait, iris, voice and signature, recognizes one's identity using his/her physiological or behavioral characteristics. Among these biometric signs, fingerprint has been researched the longest period of time, and shows the most promising future in real-world applications. However, because of the complex distortions among the different impressions of the same finger, fingerprint recognition is still a challenging problem.

Computational Algorithms for Fingerprint Recognition presents an entire range of novel computational algorithms for fingerprint recognition. These include feature extraction, indexing, matching, classification, and performance prediction/validation methods, which have been compared with state-of-art algorithms and found to be effective and efficient on real-world data. All the algorithms have been evaluated on NIST-4 database from National Institute of Standards and Technology (NIST). Specific algorithms addressed include:
-Learned template based minutiae extraction algorithm,
-Triplets of minutiae based fingerprint indexing algorithm,
-Genetic algorithm based fingerprint matching algorithm,
-Genetic programming based feature learning algorithm for fingerprint classification,
-Comparison of classification and indexing based approaches for identification,
-Fundamental fingerprint matching performance prediction analysis and its validation.

Computational Algorithms for Fingerprint Recognition is designed for a professional audience composed of researchers and practitioners in industry. This book is also suitable as a secondary text for graduate-level students in computer science and engineering.

Contents

1. Introduction.- 2. Learned Templates for Minutiae Extraction.- 3. Fingerprint Indexing.- 4. Fingerprint Matching by Genetic Algorithms.- 5. Genetic Programming for Fingerprint Classification.- 6. Classification and Indexing Approaches for Identification.- 7. Fundamental Performance Analysis — Prediction and Validation.- 8. Summary and Future Work.- References.

最近チェックした商品