Numerical Optimization Techniques (Translations Series in Mathematics and Engineering) (Reprint)

個数:

Numerical Optimization Techniques (Translations Series in Mathematics and Engineering) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9781461295303
  • DDC分類 003

Full Description

The book of Professor Evtushenko describes both the theoretical foundations and the range of applications of many important methods for solving nonlinear programs. Particularly emphasized is their use for the solution of optimal control problems for ordinary differential equations. These methods were instrumented in a library of programs for an interactive system (DISO) at the Computing Center of the USSR Academy of Sciences, which can be used to solve a given complicated problem by a combination of appropriate methods in the interactive mode. Many examples show the strong as well the weak points of particular methods and illustrate the advantages gained by their combination. In fact, it is the central aim of the author to pOint out the necessity of using many techniques interactively, in order to solve more dif­ ficult problems. A noteworthy feature of the book for the Western reader is the frequently unorthodox analysis of many known methods in the great tradition of Russian mathematics. J. Stoer PREFACE Optimization methods are finding ever broader application in sci­ ence and engineering. Design engineers, automation and control systems specialists, physicists processing experimental data, eco­ nomists, as well as operations research specialists are beginning to employ them routinely in their work. The applications have in turn furthered vigorous development of computational techniques and engendered new directions of research. Practical implementa­ tion of many numerical methods of high computational complexity is now possible with the availability of high-speed large-memory digital computers.

Contents

Notification.- 1. An Introduction to Optimization Theory.- 1. Convex Sets and Convex Functions.- 2. Differentiability of Convex Functions.- 3. Necessary and Sufficient Conditions of a Local Extremum of Functions of Many Variables.- 4. Necessary and Sufficient Conditions for a Minimum of Functions on Sets.- 5. Properties of Minimax Problems.- 6. Conditions for a Minimum in Nonlinear Programming Problems Without Differentiability.- 7. Conditions for a Minimum in Nonlinear Programming Problems With Differentiability.- 8. Necessary Conditions for a Minimum in Optimal Control Problems.- 2. Convergence Theorems and Their Application to the Investigation of Numerical Methods.- 1. Stability of the First-Order Approximation.- 2. The Method of Lyapunov Functions.- 3. Theorems on Convergence of Iterative Processes.- 4. Convergence of Processes Generated by Multivalued Mappings.- 5. Methods for Solving Systems of Nonlinear Equations.- 6. Numerical Methods for Finding a Minimax.- 3. The Penalty-Function Method.- 1. The Exterior Penalty-Function Method.- 2. Estimation of Accuracy.- 3. The Cost-Function Parametrization Method.- 4. The Interior Penalty-Function Method.- 5. The Linearization Method.- 4. Numerical Methods for Solving Nonlinear Programming Problems Using Modified Lagrangians.- 1. The Simplest Modification of the Lagrangian.- 2. Modified Lagrangians.- 3. Proof of Convergence for the Simple Iteration Method.- 4. Solution of Convex Programming Problems.- 5. Reduction to a Maximin Problem.- 6. Reduction to a Minimax Problem.- 5. Relaxation Methods for Solving Nonlinear Programming Problems.- 1. Application of the Reduced Gradient Method to Solving Problems With Equality-Type Constraints.- 2. A Generalization of the Reduced Gradient Method.- 3. A Discrete Version of the Reduced Gradient Method.- 4. The Conditional Gradient Method.- 5. The Gradient Projection Method.- 6. Numerical Methods for Solving Optimal Control Problems.- 1. Basic Computational Formulas.- 2. Necessary and Sufficient Conditions for A Minimum.- 3. Numerical Methods Based on the Reduction to Nonlinear Programming Problems.- 4. Discrete Minimum Principles.- 5. Numerical Methods Based on Discrete Minimum Principle.- 6. Some Generalizations.- 7. Examples of Numerical Computations.- 8. An Application to Differential Games.- 7. Search for Global Solutions.- 1. The General Notion of Coverings.- 2. Covering a Parallelepiped.- 3. Solution of Nonlinear Programming Problems.- 4. Solution of Systems of Algebraic Equations.- 5. Solution of Minimax Problems.- 6. Solution of Multicriteria Problems.- Appendix I. Differentiability.- Appendix II. Some Properties of Matrices.- Appendix III. Some Properties of Mappings.- Notes and Comments.- References.- List of Forthcoming Publications.- transliteration Table.

最近チェックした商品