Measure and Integral (Graduate Texts in Mathematics) 〈1〉 (Reprint)

個数:

Measure and Integral (Graduate Texts in Mathematics) 〈1〉 (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 160 p.
  • 言語 ENG
  • 商品コード 9781461289289
  • DDC分類 515

Full Description

This is a systematic exposition of the basic part of the theory of mea­ sure and integration. The book is intended to be a usable text for students with no previous knowledge of measure theory or Lebesgue integration, but it is also intended to include the results most com­ monly used in functional analysis. Our two intentions are some what conflicting, and we have attempted a resolution as follows. The main body of the text requires only a first course in analysis as background. It is a study of abstract measures and integrals, and comprises a reasonably complete account of Borel measures and in­ tegration for R Each chapter is generally followed by one or more supplements. These, comprising over a third of the book, require some­ what more mathematical background and maturity than the body of the text (in particular, some knowledge of general topology is assumed) and the presentation is a little more brisk and informal. The material presented includes the theory of Borel measures and integration for ‾n, the general theory of integration for locally compact Hausdorff spaces, and the first dozen results about invariant measures for groups. Most of the results expounded here are conventional in general character, if not in detail, but the methods are less so. The following brief overview may clarify this assertion.

Contents

0: Preliminaries.- Sets.- Functions.- Countability.- Orderings and Lattices.- Convergence in ?*.- Unordered Summability.- Hausdorff Maximal Principle.- 1: Pre-Measures.- Supplement: Contents.- Supplement: G Invariant Contents.- Supplement: Carathéodory Pre-Measures.- 2: Pre-Measure to Pre-Integral.- Supplement: Volume ?n;The Iterated Integral.- Supplement: Pre-Integrals on Cc(X) and C0(X).- 3: Pre-Integral to Integral.- 4: Integral to Measure.- Supplement: Lebesgue Measure ?n for ?n.- Supplement: Measures on B?(X).- Supplement: G Invariant Measures.- 5: Measurability and ?-Simplicity.- Supplement: Standard Borel Spaces.- 6: The Integral I? on L1(?).- Supplement: Borel Measures and Positive Functionals.- 7: Integrals* and Products.- Supplement: Borel Product Measure.- 8: Measures* and Mappings.- Supplement: Stieltjes Integration.- Supplement: The Image of ?p Under a Smooth Map 100 Supplement: Maps of Borel Measures*; Convolution.- 9: Signed Measures and Indefinite Integrals.- Supplement: Decomposable Measures.- Supplement: Haar Measure.- 10: Banach Spaces.- Supplement: The Spaces C0(X)* and L1(?)*.- Supplement: Complex Integral and Complex Measure.- Supplement: The Bochner Integral.- Selected References.

最近チェックした商品