Directions in Robust Statistics and Diagnostics (The Ima Volumes in Mathematics and Its Applications) 〈2〉 (Reprint)

個数:

Directions in Robust Statistics and Diagnostics (The Ima Volumes in Mathematics and Its Applications) 〈2〉 (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 398 p.
  • 言語 ENG
  • 商品コード 9781461287728
  • DDC分類 519

Full Description

This IMA Volume in Mathematics and its Applications DIRECTIONS IN ROBUST STATISTICS AND DIAGNOSTICS is based on the proceedings of the first four weeks of the six week IMA 1989 summer program "Robustness, Diagnostics, Computing and Graphics in Statistics". An important objective of the organizers was to draw a broad set of statisticians working in robustness or diagnostics into collaboration on the challenging problems in these areas, particularly on the interface between them. We thank the organizers of the robustness and diagnostics program Noel Cressie, Thomas P. Hettmansperger, Peter J. Huber, R. Douglas Martin, and especially Werner Stahel and Sanford Weisberg who edited the proceedings. A vner Friedman Willard Miller, Jr. PREFACE Central themes of all statistics are estimation, prediction, and making decisions under uncertainty. A standard approach to these goals is through parametric mod­ elling. Parametric models can give a problem sufficient structure to allow standard, well understood paradigms to be applied to make the required inferences. If, how­ ever, the parametric model is not completely correct, then the standard inferential methods may not give reasonable answers. In the last quarter century, particularly with the advent of readily available computing, more attention has been paid to the problem of inference when the parametric model used is not correctly specified.

Contents

Content.- Small sample properties of robust analyses of linear models based on R-estimates: A survey.- Regression diagnostics for rank-based methods II.- Robust multivariate spectral analysis of the EEG.- Configural polysampling.- Robustness to unequal scale and other departures from the classical linear model.- Unmasking multivariate outliers and leverage points by means of BMDP3R.- Glimpse: An assessor of GLM misspecification.- Regression quantile diagnostics for multiple outliers.- Robust testing of functionals.- Robustness of the p-subset algorithm for regression with high breakdown point.- Robust distances: Simulations and cutoff values.- Diagnostics for regression-ARMA time series.- General approaches to stepwise identification of unusual values in data analysis.- Research directions in robust statistics.- Comparisons between first order and second order approximations in regression diagnostics.- Consumer datesware.- Graphical displays for alternate regression fits.- Some issues in the robust estimation of multivariate location and scatter.- Adaptive efficient weighted least squares with dependent observations.- A procedure for robust estimation and inference in linear regression.- Author index.

最近チェックした商品