Excessive Measures (Probability and Its Applications)

個数:

Excessive Measures (Probability and Its Applications)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 190 p.
  • 言語 ENG
  • 商品コード 9781461280361
  • DDC分類 519.2

Full Description

The study of the cone of excessive measures associated with a Markov process goes back to Hunt's fundamental mem- oir [H57]. However until quite recently it received much less attention than the cone of excessive functions. The fact that an excessive function can be composed with the underlying Markov process to give a supermartingale, subject to secondary finiteness hypotheses, is crucial in the study of excessive func- tions. The lack of an analogous construct for excessive mea- sures seemed to make them much less tractable to a proba- bilistic analysis. This point of view changed radically with the appearance of the pioneering paper by Fitzsimmons and Maisonneuve [FM86] who showed that a certain stationary process associated with an excessive measure could be used to study excessive measures probabilistically. These station- ary processes or measures had been constructed by Kuznetsov [Ku74] extending earlier work of Dynkin. It is now common to call them Kuznetsov measures. Following the Fitzsimmons- Maisonneuve paper there was renewed interest and remarkable progress in the study of excessive measures.
The purpose of this monograph is to organize under one cover and prove under standard hypotheses many of these recent results in the theory of excessive measures. The two basic tools in this recent development are Kuznet- sov measures mentioned above and the energy functional.

Contents

1. Notation and Preliminaries.- 2. Excessive Measures.- 3. The Energy Functional.- 4. Balayage of Excessive Measures.- 5. Potential Theory of Excessive Measures.- 6. Kuznetsov Measures.- 7. Kuznetsov Measures II.- 8. Homogeneous Random Measures.- 9. Flows and Palm Measures.- 10. Palm Measures and Capacity.- 11. Exit Systems and Applications.- Appendix A.- Appendix B.- Notation Index.

最近チェックした商品