Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) (Reprint)

個数:

Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 359 p.
  • 言語 ENG
  • 商品コード 9781461278245
  • DDC分類 513

Full Description

Research on non-standard finite element methods is evolving rapidly and in this text Brezzi and Fortin give a general framework in which the development is taking place. The presentation is built around a few classic examples: Dirichlet's problem, Stokes problem, Linear elasticity. The authors provide with this publication an analysis of the methods in order to understand their properties as thoroughly as possible.

Contents

I: Variational Formulations and Finite Element Methods.- §1. Classical Methods.- §2. Model Problems and Elementary Properties of Some Functional Spaces.- §3. Duality Methods.- §4. Domain Decomposition Methods, Hybrid Methods.- §5. Augmented Variational Formulations.- §6. Transposition Methods.- §7. Bibliographical remarks.- II: Approximation of Saddle Point Problems.- §1. Existence and Uniqueness of Solutions.- §2. Approximation of the Problem.- §3. Numerical Properties of the Discrete Problem.- §4. Solution by Penalty Methods, Convergence of Regularized Problems.- §5. Iterative Solution Methods. Uzawa's Algorithm.- §6. Concluding Remarks.- III: Function Spaces and Finite Element Approximations.- §1. Properties of the spaces Hs(?) and H(div; ?).- §2. Finite Element Approximations of H1(?) and H2(?).- §3. Approximations of H (div; ?).- §4. Concluding Remarks.- IV: Various Examples.- §1. Nonstandard Methods for Dirichlet's Problem.- §2. Stokes Problem.- §3. Elasticity Problems.- §4. A Mixed Fourth-Order Problem.- §5. Dual Hybrid Methods for Plate Bending Problems.- V: Complements on Mixed Methods for Elliptic Problems.- §1. Numerical Solutions.- §2. A Brief Analysis of the Computational Effort.- §3. Error Analysis for the Multiplier.- §4. Error Estimates in Other Norms.- §5. Application to an Equation Arising from Semiconductor Theory.- §6. How Things Can Go Wrong.- §7. Augmented Formulations.- VI: Incompressible Materials and Flow Problems.- §1. Introduction.- §2. The Stokes Problem as a Mixed Problem.- §3. Examples of Elements for Incompressible Materials.- §4. Standard Techniques of Proof for the inf-sup Condition.- §5. Macroelement Techniques and Spurious Pressure Modes.- §6. An Alternative Technique of Proof and Generalized Taylor-Hood Element.- §7. Nearly Incompressible Elasticity, Reduced Integration Methods and Relation with Penalty Methods.- §8. Divergence-Free Basis, Discrete Stream Functions.- §9. Other Mixed and Hybrid Methods for Incompressible Flows.- VII: Other Applications.- §1. Mixed Methods for Linear Thin Plates.- §2. Mixed Methods for Linear Elasticity Problems.- §3. Moderately Thick Plates.- References.

最近チェックした商品