Topological Nonlinear Analysis : Degree, Singularity, and Variations (Progress in Nonlinear Differential Equations and Their Applications)

個数:

Topological Nonlinear Analysis : Degree, Singularity, and Variations (Progress in Nonlinear Differential Equations and Their Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 531 p.
  • 言語 ENG
  • 商品コード 9781461275848
  • DDC分類 515

Full Description

Topological tools in Nonlinear Analysis had a tremendous develop­ ment during the last few decades. The three main streams of research in this field, Topological Degree, Singularity Theory and Variational Meth­ ods, have lately become impetuous rivers of scientific investigation. The process is still going on and the achievements in this area are spectacular. A most promising and rapidly developing field of research is the study of the role that symmetries play in nonlinear problems. Symmetries appear in a quite natural way in many problems in physics and in differential or symplectic geometry, such as closed orbits for autonomous Hamiltonian systems, configurations of symmetric elastic plates under pressure, Hopf Bifurcation, Taylor vortices, convective motions of fluids, oscillations of chemical reactions, etc . . . Some of these problems have been tackled recently by different techniques using equivariant versions of Degree, Singularity and Variations. The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in Nonlinear Analysis during the last two-three decades. The survey articles presented here reflect the personal taste and points of view of the authors (all of them well-known and distinguished specialists in their own fields) on the subject matter. A common feature of these papers is that of start­ ing with an historical introductory background of the different disciplines under consideration and climbing up to the heights of the most recent re­ sults.

Contents

Variational Methods and Nonlinear Problems: Classical Results and Recent Advances.- • Introduction.- • Lusternik-Schnirelman Theory.- • Applications to Nonlinear Eigenvalues.- • Unbounded Functionals.- • Elliptic Dirichlet Problems.- • Singular Potentials.- • References.- to Morse Theory: A New Approach.- • Introduction.- • Contents.- • The Abstract Theory.- • The Morse Index.- • The Poincaré Polynomial.- • The Conley Blocks.- • The Morse Relations.- • Morse Theory for Degenerate Critical Points.- • Some Existence Theorems.- • An Application to Riemannian Geometry.- • Riemannian Manifolds.- • Geodesies.- • The Morse Theory for Geodesics.- • The Index Theorem.- • An Application to Space-Time Geometry.- • Introduction.- • Some Examples of Lorentzian Manifolds.- • Morse Theory for Lorentzian Manifolds.- • Preliminary Lemmas.- • Proof of The Morse Relations For Static Space-Time.- • Some Application to a Semilinear Elliptic Equation.- • Introduction.- • The Sublinear Case.- • The Superlinear Case Morse Relations for Positive Solutions.- • The Functional Setting.- • Some Hard Analysis.- • The Photography Method.- • The Topology of The Strip.- • References.- Applications of Singularity Theory to the Solutions of Nonlinear Equations.- • The Full Lyapunov-Schmidt Reduction.- • Mather's Theory of C?-Stability of Mappings - Global Theory.- • Mather's Local Theory as Paradigm.- • Singularity Theory with Special Conditions.- • The Structure of Nonlinear Fredholm Operators.- • Multiplicities of Solutions to Nonlinear Equations.- • The Theory for Topological Equivalence.- • Bibliography.- Fixed Point Index Calculations and Applications.- • The Fixed Point Index.- • Some Remarks onConvex Sets.- • A Basic Index Calculation.- • Index Calculations in Product Cones.- • Applications of Index Formulae - I.- • Applications of Index Formulae - II.- • Some Global Branches.- • Monotone Dynamical Systems.- • Preliminaries.- • Connecting Orbits and Related Results.- • Generic Convergence.- • References.- Topological Bifurcation.- • Abstract.- • Introduction.- • Preliminaries.- • One Parameter Bifurcation.- • Local Bifurcation.- • Global Bifurcation.- • Special Nonlinearities.- • Multiparameter Bifurcation.- • Sufficient Conditions for Local Bifurcation.- • Necessary Conditions for Linearized Local Bifurcation.- • Multiparameter Global Bifurcation.- • A Summation Formula and A Generalized Degree.- • Structure and Dimension of Global Branches.- • O-EPI Maps.- • Dimension.- • Application to Bifurcation Problems.- • Equivariant Bifurcation.- • Preliminaries.- • Consequences of the Symmetry.- • ?-EPI Maps.- • ?-Degree.- • The Equivariant J-Homomorphism and Sufficient Conditions.- • Necessary and Sufficient Conditions for Equivariant Bifurcation.- • Bibliography.- Critical Point Theory.- • Introduction.- • The Mountain Pass Theorem.- • The Saddle Point Theorem.- • Linking and A General Critical Point Theorem.- • Periodic Solutions of Hamiltonian Systems.- • Introduction.- • The Technical Framework.- • Periodic Solutions of Prescribed Energy.- • Periodic Solutions of Prescribed Period.- • Connecting Orbits.- • Introduction.- • Homoclinic Solutions.- • Heteroclinic Solutions.- • References.- Symplectic Topology: An Introduction.- • The Classical Uncertainty Principle, Symplectic Rigidity.- • Construction of Symplectic Invariants.- • Generating Functions.- •Historical Remarks.- • Appendix: Rigidity for Finite Dimensional Lie Groups.

最近チェックした商品