Partial Differential Equations for Computational Science : With Maple® and Vector Analysis

個数:

Partial Differential Equations for Computational Science : With Maple® and Vector Analysis

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 517 p.
  • 言語 ENG
  • 商品コード 9781461274568
  • DDC分類 515

Full Description

This is a classroom-tested and developed textbook designed for use in either one- or two term courses in Partial Differential Equations taught at the advanced undergradute and beginning graduate levels of instruction. In addition to covering the standard PDE topics taught in such courses, there is a heavy focus on vector analysis. Maple examples and exercises for the students are presented strategically within the book, and an Appendix on Maple facilitates the use of this computer algebra language, acting as a quick reference source for readers. This book will have strong appeal to interdisciplinary audiences of engineers and scientists, particulary in regard to its treatments of fluid mechanics, heat equations, and continuum mechanics, inclusion of the latter being a unique feature of the presentation.

Contents

1 Introduction.- 1.1 Vector Analysis: Some Basic Notions.- 1.2 General Systems of PDEs.- 1.3 The Main Examples of PDEs.- 1.4 The Flow Generated by a Vector Field.- 2 Derivation of the Heat Equation.- 2.1 Heat Flow: Fourier's Law.- 2.2 The Heat Equation (Without Convection).- 2.3 Initial Conditions and Boundary Conditions.- 2.4 Initial-Boundary Value Problems.- 3 The 1-D Heat Equation.- 3.1 The Homogeneous Problem.- 3.2 Separation of Variables.- 3.3 Sturm-Liouville Problems.- 4 Solution of the 1-D Heat Problem.- 4.1 Solution of the Homogeneous Heat IBVP.- 4.2 Transforming to Homogeneous BCs.- 4.3 The Semi-Homogeneous Heat Problem.- 5 Computational Analysis.- 5.1 Plotting Solutions of Heat Problems.- 5.2 Sturm-Liouville Problems.- 5.3 Fourier Analysis.- 6 Two-Dimensional Heat Flow.- 6.1 The 2-D Heat Equation.- 6.2 Rectangular Regions R.- 6.3 The Homogeneous Case.- 6.4 The Semi-Homogeneous Problem.- 6.5 Transforming to Homogeneous BCs.- 7 Boundary Value Problems.- 7.1 The Dirichlet Problem for the Unit Square.- 7.2 The Neumann Problem for the Unit Square.- 7.3 Mixed BVPs.- 8 3-D Heat Flow.- 8.1 The Heat Equation for the Unit Cube.- 8.2 The Semi-Homogeneous Problem.- 8.3 Transforming to Homogeneous BCs.- 8.4 Examples of BVPs for the Unit Cube.- 8.5 Heat Problems for the Cube.- 9 Maxwell's Equations.- 9.1 Maxwell's Equations in Empty Space.- 9.2 Electrostatics and Magnetostatics.- 9.3 Existence of Potentials.- 9.4 Potentials and Gauge Transformations.- 10 Fluid Mechanics.- 10.1 The Stress Tensor for a Fluid.- 10.2 The Fluid Equations.- 10.3 Special Solutions of the Euler Equations.- 10.4 Special Solutions of the Navier-Stokes Equations.- 10.5 Solution of the Navier-Stokes Equations.- 11 Waves in Elastic Materials.- 11.1 Strings: 1-D Elastic Materials.- 11.2 Membranes:2-Dimensional Elastic Materials.- 11.3 Solids: 3-D Elastic Materials.- 12 The Heat IBVP in Polar Coordinates.- 12.1 The Polar Coordinate Map.- 12.2 The Laplacian in Polar Coordinates.- 12.3 The BCs and IC in Polar Coordinates.- 12.4 The Heat IBVP for a Disk.- 12.5 Solution of the Homogeneous Problem.- 12.6 The Heat Equation for an Annulus.- 12.7 The Homogeneous Problem for an Annulus.- 12.8 BVPs in Polar Coordinates.- 13 Solution of the Heat IBVP in General.- 13.1 Weak Solutions of Poisson's Equation.- 13.2 Solution of the Heat IBVP.- Appendix A Vector Analysis.- A.1 Curves and Line Integrals.- A.2 Surfaces and Surface Integrals.- A.3 Regions and Volume Integrals.- A.4 Boundaries.- A.5 Closed Curves and Surfaces.- A.6 The Theorems of Gauss, Green, and Stokes.- A.7 Curvatures and Fundamental Forms.- Appendix B Continuum Mechanics.- B.1 The Eulerian Description.- B.2 The Lagrangian Description.- B.3 Two-Dimensional Materials.- B.4 One-Dimensional Materials.- Appendix C Maple Reference Guide.- C.1 Mathematical Expressions and Functions.- C.2 Packages.- C.3 Plotting and Visualization.- C.4 Plotting Flows.- C.5 Programming.- Appendix D Symbols and Tables.- References.

最近チェックした商品