Analysis and Geometry on Complex Homogeneous Domains (Progress in Mathematics)

個数:

Analysis and Geometry on Complex Homogeneous Domains (Progress in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 540 p.
  • 言語 ENG
  • 商品コード 9781461271154
  • DDC分類 512

Full Description

A number of important topics in complex analysis and geometry are
covered in this excellent introductory text. Written by experts in
the subject, each chapter unfolds from the basics to the more complex.
The exposition is rapid-paced and efficient, without compromising
proofs and examples that enable the reader to grasp the essentials.
The most basic type of domain examined is the bounded symmetric
domain, originally described and classified by Cartan and Harish-
Chandra. Two of the five parts of the text deal with these domains:
one introduces the subject through the theory of semisimple Lie
algebras (Koranyi), and the other through Jordan algebras and triple
systems (Roos). Larger classes of domains and spaces are furnished by
the pseudo-Hermitian symmetric spaces and related R-spaces. These
classes are covered via a study of their geometry and a presentation
and classification of their Lie algebraic theory (Kaneyuki).
In the fourth part of the book, the heat kernels of the symmetric
spaces belonging to the classical Lie groups are determined (Lu).
Explicit computations are made for each case, giving precise results
and complementing the more abstract and general methods presented.
Also explored are recent developments in the field, in particular, the
study of complex semigroups which generalize complex tube domains and
function spaces on them (Faraut).
This volume will be useful as a graduate text for students of Lie
group theory with connections to complex analysis, or as a self-study
resource for newcomers to the field. Readers will reach the frontiers
of the subject in a considerably shorter time than with existing
texts.

Contents

I Function Spaces on Complex Semi-groups by Jacques Faraut.- I Hilbert Spaces of Holomorphic Functions.- II Invariant Cones and Complex Semi-groups.- III Positive Unitary Representations.- IV Hilbert Function Spaces on Complex Semi-groups.- V Hilbert Function Spaces on SL(2,?).- VI Hilbert Function Spaces on a Complex Semi-simple Lie Group.- II Graded Lie Algebras and Pseudo-hermitian Symmetric Spaces by Soji Kaneyuki.- I Semisimple Graded Lie Algebras.- II Symmetric R-Spaces.- III Pseudo-Hermitian Symmetric Spaces.- III Function Spaces on Bounded Symmetric Domains by Adam Kordnyi.- I Bergman Kernel and Bergman Metric.- II Symmetric Domains and Symmetric Spaces.- III Construction of the Hermitian Symmetric Spaces.- IV Structure of Symmetric Domains.- V The Weighted Bergman Spaces.- VI Differential Operators.- VII Function Spaces.- IV The Heat Kernels of Non Compact Symmetric Spaces by Qi-keng Lu.- I Introduction.- II The Laplace-Beltrami Operator in Various Coordinates.- III The Integral Transformations.- IV The Heat Kernel of the Hyperball R?(m, n).- V The Harmonic Forms on the Complex Grassmann Manifold.- VI The Horo-hypercircle Coordinate of a Complex Hyperball.- VII The Heat Kernel of RII(m).- VIII The Matrix Representation of NIRGSS.- V Jordan Triple Systems by Guy Roos.- I Polynomial Identities.- II Jordan Algebras.- III The Quasi-inverse.- IV The Generic Minimal Polynomial.- V Tripotents and Peirce Decomposition.- VI Hermitian Positive JTS.- VII Further Results and Open Problems.

最近チェックした商品