Lyapunov-Based Control of Mechanical Systems (Control Engineering)

個数:

Lyapunov-Based Control of Mechanical Systems (Control Engineering)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 316 p.
  • 言語 ENG
  • 商品コード 9781461271086
  • DDC分類 621

Full Description

The design of nonlinear controllers for mechanical systems has been an ex­ tremely active area of research in the last two decades. From a theoretical point of view, this attention can be attributed to their interesting dynamic behavior, which makes them suitable benchmarks for nonlinear control the­ oreticians. On the other hand, recent technological advances have produced many real-world engineering applications that require the automatic con­ trol of mechanical systems. the mechanism for de­ Often, Lyapunov-based techniques are utilized as veloping different nonlinear control structures for mechanical systems. The allure of the Lyapunov-based framework for mechanical system control de­ sign can most likely be assigned to the fact that Lyapunov function candi­ dates can often be crafted from physical insight into the mechanics of the system. That is, despite the nonlinearities, couplings, and/or the flexible effects associated with the system, Lyapunov-based techniques can often be used to analyze the stability of the closed-loop system by using an energy­ like function as the Lyapunov function candidate. In practice, the design procedure often tends to be an iterative process that results in the death of many trees. That is, the controller and energy-like function are often constructed in concert to foster an advantageous stability property and/or robustness property. Fortunately, over the last 15 years, many system the­ ory and control researchers have labored in this area to produce various design tools that can be applied in a variety of situations.

Contents

1 Introduction.- 1.1 Lyapunov-Based Control.- 1.2 Rigid Mechanical Systems.- 1.3 Flexible Mechanical Systems.- 1.4 Real-Time Control Implementation.- 2 Control Techniques for Friction Compensation.- 2.1 Introduction.- 2.2 Reduced-Order Friction Model.- 2.3 Control Designs for Reduced-Order Model.- 2.4 Full-Order Friction Model.- 2.5 Control Designs for Full-Order Model.- 2.6 Notes.- 3 Full-State Feedback Tracking Controllers.- 3.1 Introduction.- 3.2 System Model.- 3.3 Problem Statement.- 3.4 Standard Adaptive Control.- 3.5 Desired Trajectory-Based Adaptive Control.- 3.6 Control/Adaptation Law Modularity.- 3.7 Notes.- 4 Output Feedback Tracking Controllers.- 4.1 Introduction.- 4.2 Problem Statement.- 4.3 Model-Based Observer/Control.- 4.4 Linear Filter-Based Adaptive Control.- 4.5 Nonlinear Filter-Based Adaptive Control.- 4.6 Notes.- 5 Strings and Cables.- 5.1 Introduction.- 5.2 Actuator-String System.- 5.3 Cable System.- 5.4 Notes.- 6 Cantilevered Beams.- 6.1 Introduction.- 6.2 Euler-Bernoulli Beam.- 6.3 Timoshenko Beam.- 6.4 Notes.- 7 Boundary Control Applications.- 7.1 Introduction.- 7.2 Axially Moving String System.- 7.3 Flexible Link Robot Arm.- 7.4 Flexible Rotor System.- 7.5 Notes.- Appendices.- A Mathematical Background.- References.- B Bounds for General Rigid Mechanical System.- References.- C Bounds for the Puma Robot.- References.- D Control Programs.- D.1 DCAL Controller.- D.2 Flexible Rotor.

最近チェックした商品