Monte Carlo Methods in Bayesian Computation (Springer Series in Statistics)

個数:

Monte Carlo Methods in Bayesian Computation (Springer Series in Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 387 p.
  • 言語 ENG
  • 商品コード 9781461270744
  • DDC分類 519

Full Description

Sampling from the posterior distribution and computing posterior quanti­ ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput­ ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv­ ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste­ rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in­ volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac­ tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications.

Contents

1 Introduction.- 1.1 Aims.- 1.2 Outline.- 1.3 Motivating Examples.- 1.4 The Bayesian Paradigm.- Exercises.- 2 Markov Chain Monte Carlo Sampling.- 2.1 Gibbs Sampler.- 2.2 Metropolis-Hastings Algorithm.- 2.3 Hit-and-Run Algorithm.- 2.4 Multiple-Try Metropolis Algorithm.- 2.5 Grouping, Collapsing, and Reparameterizations.- 2.6 Acceleration Algorithms for MCMC Sampling.- 2.7 Dynamic Weighting Algorithm.- 2.8 Toward "Black-Box" Sampling.- 2.9 Convergence Diagnostics.- Exercises.- 3 Basic Monte Carlo Methods for Estimating Posterior Quantities.- 3.1 Posterior Quantities.- 3.2 Basic Monte Carlo Methods.- 3.3 Simulation Standard Error Estimation.- 3.4 Improving Monte Carlo Estimates.- 3.5 Controlling Simulation Errors.- Exercises.- 4 Estimating Marginal Posterior Densities.- 4.1 Marginal Posterior Densities.- 4.2 Kernel Methods.- 4.3 IWMDE Methods.- 4.4 Illustrative Examples.- 4.5 Performance Study Using the Kullback-Leibler Divergence.- Exercises.- 5 Estimating Ratios of Normalizing Constants.- 5.1 Introduction.- 5.2 Importance Sampling.- 5.3 Bridge Sampling.- 5.4 Path Sampling.- 5.5 Ratio Importance Sampling.- 5.6 A Theoretical Illustration.- 5.7 Computing Simulation Standard Errors.- 5.8 Extensions to Densities with Different Dimensions.- 5.9 Estimation of Normalizing Constants After Transformation.- 5.10 Other Methods.- 5.11 An Application of Weighted Monte Carlo Estimators.- 5.12 Discussion.- Exercises.- 6 Monte Carlo Methods for Constrained Parameter Problems.- 6.1 Constrained Parameter Problems.- 6.2 Posterior Moments and Marginal Posterior Densities.- 6.3 Computing Normalizing Constants for Bayesian Estimation.- 6.4 Applications.- 6.5 Discussion.- Exercises.- 7 Computing Bayesian Credible and HPD Intervals.- 7.1 Bayesian Credible and HPD Intervals.- 7.2 EstimatingBayesian Credible Intervals.- 7.3 Estimating Bayesian HPD Intervals.- 7.4 Extension to the Constrained Parameter Problems.- 7.5 Numerical Illustration.- 7.6 Discussion.- Exercises.- 8 Bayesian Approaches for Comparing Nonnested Models.- 8.1 Marginal Likelihood Approaches.- 8.2 Scale Mixtures of Multivariate Normal Link Models.- 8.3 "Super-Model" or "Sub-Model" Approaches.- 8.4 Criterion-Based Methods.- 9 Bayesian Variable Selection.- 9.1 Variable Selection for Logistic Regression Models.- 9.2 Variable Selection for Time Series Count Data Models.- 9.3 Stochastic Search Variable Selection.- 9.4 Bayesian Model Averaging.- 9.5 Reversible Jump MCMC Algorithm for Variable Selection.- Exercises.- 10 Other Topics.- 10.1 Bayesian Model Adequacy.- 10.2 Computing Posterior Modes.- 10.3 Bayesian Computation for Proportional Hazards Models.- 10.4 Posterior Sampling for Mixture of Dirichlet Process Models.- Exercises.- References.- Author Index.

最近チェックした商品