Fundamentals of Mathematical Statistics : Probability for Statistics (Springer Texts in Statistics)

個数:

Fundamentals of Mathematical Statistics : Probability for Statistics (Springer Texts in Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 432 p.
  • 言語 ENG
  • 商品コード 9781461269847
  • DDC分類 519

Full Description

This is the first half of a text for a two semester course in mathematical statistics at the senior/graduate level for those who need a strong background in statistics as an essential tool in their career. To study this text, the reader needs a thorough familiarity with calculus including such things as Jacobians and series but somewhat less intense familiarity with matrices including quadratic forms and eigenvalues. For convenience, these lecture notes were divided into two parts: Volume I, Probability for Statistics, for the first semester, and Volume II, Statistical Inference, for the second. We suggest that the following distinguish this text from other introductions to mathematical statistics. 1. The most obvious thing is the layout. We have designed each lesson for the (U.S.) 50 minute class; those who study independently probably need the traditional three hours for each lesson. Since we have more than (the U.S. again) 90 lessons, some choices have to be made. In the table of contents, we have used a * to designate those lessons which are "interesting but not essential" (INE) and may be omitted from a general course; some exercises and proofs in other lessons are also "INE". We have made lessons of some material which other writers might stuff into appendices. Incorporating this freedom of choice has led to some redundancy, mostly in definitions, which may be beneficial.

Contents

I:Elementary Probability and Statistics.- 1 Relative frequency.- 2 Sample spaces.- * 3 Some rules about sets (see footnote).- 4 The counting function for finite sets.- 5 Probability on finite sample spaces.- * 6 Ordered selections.- * 7 Unordered selections.- 8 Some uniform probability spaces.- 9 Conditional probability/independence.- * 10 Bayes' rule.- 11 Random variables.- 12 Expectation.- 13 A hypergeometric distribution.- * 14 Sampling and simulation.- 15 Testing simple hypotheses.- * 16 An acceptance sampling plan.- 17 The binomial distribution.- * 18 Matching and catching.- 19 Confidence intervals for a Bernoulli ?.- 20 The Poisson distribution.- * 21 The negative binomial distribution.- II:Probability and Expectation.- 1 Some set theory.- 2 Basic probability theory.- 3 The cumulative distribution function.- 4 Some continuous CDFs.- 5 The normal distribution.- 6 Some algebra of random variables.- 7 Convergence of sequences of random variables.- 8 Convergence almost surely and in probability.- 9 Integration-I.- * 10 Integration-II.- 11 Theorems for expectation.- 12 Stieltjes integrals.- 13 Product measures and integrals.- III:Limiting Distributions.- 1 Joint distributions: discrete.- 2 Conditional distributions: discrete.- 3 Joint distributions: continuous.- 4 Conditional distributions: continuous.- 5 Expectation: examples.- 6 Convergence in mean, in distribution.- * 7 Other relations in modes of convergence.- 8 Laws of large numbers.- 9 Convergence of sequences of distribution functions.- 10 Convergence of sequences of integrals.- 11 On the sum of random variables.- 12 Characteristic functions-I.- 13 Characteristic functions-II.- 14 Convergence of sequences of characteristic functions.- 15 Central limit theorems.- References.

最近チェックした商品