Practical Optimization Methods : With Mathematica® Applications

個数:

Practical Optimization Methods : With Mathematica® Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 715 p.
  • 言語 ENG
  • 商品コード 9781461267911
  • DDC分類 658

Full Description

The goal of this book is to present basic optimization theory and modern computational algorithms in a concise manner. The book is suitable for un­ dergraduate and graduate students in all branches of engineering, operations research, and management information systems. The book should also be use­ ful for practitioners who are interested in learning optimization and using these techniques on their own. Most available books in the field tend to be either too theoretical or present computational algorithms in a cookbook style. An approach that falls some­ where in between these two extremes is adopted in this book. Theory is pre­ sented in an informal style to make sense to most undergraduate and graduate students in engineering and business. Computational algorithms are also de­ veloped in an informal style by appealing to readers' intuition rather than mathematical rigor. The available, computationally oriented books generally present algorithms alone and expect readers to perform computations by hand or implement these algorithms by themselves. This obviously is unrealistic for a usual introductory optimization course in which a wide variety of optimization algorithms are discussed. There are some books that present programs written in traditional computer languages such as Basic, FORTRAN, or Pascal. These programs help with computations, but are of limited value in developing understanding of the algorithms because very little information about the intermediate steps v ' Preface VI -------------------------------------------------------- is presented.

Contents

1 Optimization Problem Formulation.- 1.1 Optimization Problem Formulation.- 1.2 The Standard Form of an Optimization Problem.- 1.3 Solution of Optimization Problems.- 1.4 Time Value of Money.- 1.5 Concluding Remarks.- 1.6 Problems.- 2 Graphical Optimization.- 2.1 Procedure for Graphical Optimization.- 2.2 GraphicalSolution function.- 2.3 Graphical Optimization Examples.- 2.4 Problems.- 3 Mathematical Preliminaries.- 3.1 Vectors and Matrices.- 3.2 Approximation Using the Taylor Series.- 3.3 Solution of Nonlinear Equations.- 3.4 Quadratic Forms.- 3.5 Convex Functions and Convex Optimization Problems.- 3.6 Problems.- 4 Optimality Conditions.- 4.1 Optimality Conditions for Unconstrained Problems.- 4.2 The Additive Property of Constraints.- 4.3 Karush-Kuhn-Tucker (KT) Conditions.- 4.4 Geometric Interpretation of KT Conditions.- 4.5 Sensitivity Analysis.- 4.6 Optimality Conditions for Convex Problems.- 4.7 Second-Order Sufficient Conditions.- 4.8 Lagrangian Duality.- 4.9 Problems.- 5 Unconstrained Problems.- 5.1 Descent direction.- 5.2 Line Search Techniques—Step Length Calculations.- 5.3 Unconstrained Minimization Techniques.- 5.4 Concluding Remarks.- 5.5 Problems.- 6 Linear Programming.- 6.1 The Standard LP Problem.- 6.2 Solving a Linear System of Equations.- 6.3 Basic Solutions of an LP Problem.- 6.4 The Simplex Method.- 6.5 Unusual Situations Arising During the Simplex Solution.- 6.6 Post-Optimality Analysis.- 6.7 The Revised Simplex Method.- 6.8 Sensitivity Analysis Using the Revised Simplex Method.- 6.9 Concluding Remarks.- 6.10 Problems.- 7 Interior Point Methods.- 7.1 Optimality Conditions for Standard LP.- 7.2 The Primal Affine Scaling Method.- 7.3 The Primal-Dual Interior Point Method.- 7.4 Concluding Remarks.- 7.5 Appendix—Null and Range Spaces.- 7.6 Problems.-8 Quadratic Programming.- 8.1 KT Conditions for Standard QP.- 8.2 The Primal Affine Scaling Method for Convex QP.- 8.3 The Primal-Dual Method for Convex QP.- 8.4 Active Set Method.- 8.5 Active Set Method for the Dual QP Problem.- 8.6 Appendix—Derivation of the Descent Direction Formula for the PAS Method.- 8.7 Problems.- 9 Constrained Nonlinear Problems.- 9.1 Normalization.- 9.2 Penalty Methods.- 9.3 Linearization of a Nonlinear Problem.- 9.4 Sequential Linear Programming—SLP.- 9.5 Basic Sequential Quadratic Programming—SQP.- 9.6 Refined SQP Methods.- 9.7 Problems.- A.1 Basic Manipulations in Mathematica.- A.2 Lists and Matrices.- A.3 Solving Equations.- A.7 Online Help.

最近チェックした商品