Elementary Topics in Differential Geometry (Undergraduate Texts in Mathematics)

個数:

Elementary Topics in Differential Geometry (Undergraduate Texts in Mathematics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9781461261551
  • DDC分類 516

Full Description

In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under­ standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ‾3. The student's preliminary understanding of higher dimensions is not cultivated.

Contents

I Graphs and Level Sets.- 2 Vector Fields.- 3 The Tangent Space.- 4 Surfaces.- 5 Vector Fields on Surfaces; Orientation.- 6 The Gauss Map.- 7 Geodesics.- 8 Parallel Transport.- 9 The Weingarten Map.- 10 Curvature of Plane Curves.- 11 Arc Length and Line Integrals.- 12 Curvature of Surfaces.- 13 Convex Surfaces.- 14 Parametrized Surfaces.- 15 Local Equivalence of Surfaces and Parametrized Surfaces.- 16 Focal Points.- 17 Surface Area and Volume.- 18 Minimal Surfaces.- 19 The Exponential Map.- 20 Surfaces with Boundary.- 21 The Gauss-Bonnet Theorem.- 22 Rigid Motions and Congruence.- 23 Isometries.- 24 Riemannian Metrics.- Notational Index.

最近チェックした商品