ニュートラルネットワークと統計的学習(テキスト・第2版)<br>Neural Networks and Statistical Learning (2ND)

個数:
電子版価格
¥16,332
  • 電子版あり

ニュートラルネットワークと統計的学習(テキスト・第2版)
Neural Networks and Statistical Learning (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 988 p.
  • 言語 ENG
  • 商品コード 9781447174516
  • DDC分類 006

Full Description

This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing.

Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include:

• multilayer perceptron;
• the Hopfield network;
• associative memory models;• clustering models and algorithms;
• t he radial basis function network;
• recurrent neural networks;
• nonnegative matrix factorization;
• independent component analysis;
•probabilistic and Bayesian networks; and
• fuzzy sets and logic.

Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.

Contents

Introduction.- Fundamentals of Machine Learning.- Perceptrons.- Multilayer perceptrons: architecture and error backpropagation.- Multilayer perceptrons: other learing techniques.- Hopfield networks, simulated annealing and chaotic neural networks.- Associative memory networks.- Clustering I: Basic clustering models and algorithms.- Clustering II: topics in clustering.- Radial basis function networks.- Recurrent neural networks.- Principal component analysis.- Nonnegative matrix factorization and compressed sensing.- Independent component analysis.- Discriminant analysis.- Support vector machines.- Other kernel methods.- Reinforcement learning.- Probabilistic and Bayesian networks.- Combining multiple learners: data fusion and emsemble learning.- Introduction of fuzzy sets and logic.- Neurofuzzy systems.- Neural circuits.- Pattern recognition for biometrics and bioinformatics.- Data mining.

最近チェックした商品