射影行列、一般逆行列、特異値分解<br>Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition (Statistics for Social Science and Behavioral Sciences)

個数:
  • ポイントキャンペーン

射影行列、一般逆行列、特異値分解
Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition (Statistics for Social Science and Behavioral Sciences)

  • ウェブストア価格 ¥22,300(本体¥20,273)
  • Springer(2011/04発売)
  • 外貨定価 US$ 109.99
  • ゴールデンウィーク ポイント2倍キャンペーン対象商品(5/6まで)
  • ポイント 404pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 234 p./サイズ 13 illus.
  • 言語 ENG
  • 商品コード 9781441998866
  • DDC分類 519

Full Description

Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space.

This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because it is closely related to the former. The book provides systematic and in-depth accounts of these concepts from a unified viewpoint of linear transformations finite dimensional vector spaces. More specially, it shows that projection matrices (projectors) and g-inverse matrices can be defined in various ways so that a vector space is decomposed into a direct-sum of (disjoint) subspaces. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition will be useful for researchers, practitioners, and students in applied mathematics, statistics, engineering, behaviormetrics, and other fields.

Contents

Fundamentals of Linear Algebra.- Projection Matrices.- Generalized Inverse Matrices.- Explicit Representations.- Singular Value Decomposition (SVD).- Various Applications.

最近チェックした商品