Duality Principles in Nonconvex Systems : Theory, Methods and Applications

個数:

Duality Principles in Nonconvex Systems : Theory, Methods and Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 472 p.
  • 言語 ENG
  • 商品コード 9781441948250
  • DDC分類 519

Full Description

Motivated by practical problems in engineering and physics, drawing on a wide range of applied mathematical disciplines, this book is the first to provide, within a unified framework, a self-contained comprehensive mathematical theory of duality for general non-convex, non-smooth systems, with emphasis on methods and applications in engineering mechanics. Topics covered include the classical (minimax) mono-duality of convex static equilibria, the beautiful bi-duality in dynamical systems, the interesting tri-duality in non-convex problems and the complicated multi-duality in general canonical systems. A potentially powerful sequential canonical dual transformation method for solving fully nonlinear problems is developed heuristically and illustrated by use of many interesting examples as well as extensive applications in a wide variety of nonlinear systems, including differential equations, variational problems and inequalities, constrained global optimization, multi-well phase transitions, non-smooth post-bifurcation, large deformation mechanics, structural limit analysis, differential geometry and non-convex dynamical systems.
With exceptionally coherent and lucid exposition, the work fills a big gap between the mathematical and engineering sciences. It shows how to use formal language and duality methods to model natural phenomena, to construct intrinsic frameworks in different fields and to provide ideas, concepts and powerful methods for solving non-convex, non-smooth problems arising naturally in engineering and science. Much of the book contains material that is new, both in its manner of presentation and in its research development. A self-contained appendix provides some necessary background from elementary functional analysis.
Audience: The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics and engineering. The whole volume or selected chapters can alsobe recommended as a text for both senior undergraduate and graduate courses in applied mathematics, mechanics, general engineering science and other areas in which the notions of optimization and variational methods are employed.

Contents

I Symmetry in Convex Systems.- 1. Mono-Duality in Static Systems.- 2. Bi-Duality in Dynamical Systems.- II Symmetry Breaking: Triality Theory in Nonconvex Systems.- 3. Tri-Duality in Nonconvex Systems.- 4. Multi-Duality and Classifications of General Systems.- III Duality in Canonical Systems.- 5. Duality in Geometrically Linear Systems.- 6. Duality in Finite Deformation Systems.- 7. Applications, Open Problems and Concluding Remarks.- Appendices.- A—Duality in Linear Analysis.- A.1 Linear spaces and duality.- A.2 Bilinear Forms and Inner Product Spaces.- A.3 Linear functionals and Dual spaces.- B—Linear Operators and Adjointness.- B.1 Linear Operators.- B.2 Adjoint Operators.- B.3 Duality Relations for Range and Nullspace.- C—Nonlinear Operators.- C.1 Operators on Finite-Dimensional Spaces.- C.2 Monotone and Pseudo-Monotone Operators on Banach Spaces.- C.3 Potential Operators and Duality Mappings.- References.

最近チェックした商品