A Reformulation-linearization Technique for Solving Discrete and Continuous Nonconvex Problems (Nonconvex Optimization and Its Applications (Closed))

個数:

A Reformulation-linearization Technique for Solving Discrete and Continuous Nonconvex Problems (Nonconvex Optimization and Its Applications (Closed))

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 538 p.
  • 言語 ENG
  • 商品コード 9781441948083
  • DDC分類 511

Full Description

This book deals with the theory and applications of the Reformulation- Linearization/Convexification Technique (RL T) for solving nonconvex optimization problems. A unified treatment of discrete and continuous nonconvex programming problems is presented using this approach. In essence, the bridge between these two types of nonconvexities is made via a polynomial representation of discrete constraints. For example, the binariness on a 0-1 variable x . can be equivalently J expressed as the polynomial constraint x . (1-x . ) = 0. The motivation for this book is J J the role of tight linear/convex programming representations or relaxations in solving such discrete and continuous nonconvex programming problems. The principal thrust is to commence with a model that affords a useful representation and structure, and then to further strengthen this representation through automatic reformulation and constraint generation techniques. As mentioned above, the focal point of this book is the development and application of RL T for use as an automatic reformulation procedure, and also, to generate strong valid inequalities. The RLT operates in two phases. In the Reformulation Phase, certain types of additional implied polynomial constraints, that include the aforementioned constraints in the case of binary variables, are appended to the problem. The resulting problem is subsequently linearized, except that certain convex constraints are sometimes retained in XV particular special cases, in the Linearization/Convexijication Phase. This is done via the definition of suitable new variables to replace each distinct variable-product term. The higher dimensional representation yields a linear (or convex) programming relaxation.

Contents

1 Introduction.- I Discrete Nonconvex Programs.- 2 RLT Hierarchy for Mixed-Integer Zero-One Problems.- 3 Generalized Hierarchy for Exploiting Special Structures in Mixed-Integer Zero-One Problems.- 4 RLT Hierarchy for General Discrete Mixed-Integer Problems.- 5 Generating Valid Inequalities and Facets Using RLT.- 6 Persistency in Discrete Optimization.- II Continuous Nonconvex Programs.- 7 RLT-Based Global Optimization Algorithms for Nonconvex Polynomial Programming Problems.- 8 Reformulation-Convexification Technique for Quadratic Programs and Some Convex Envelope Characterizations.- 9 Reformulation-Convexification Technique for Polynomial Programs: Design and Implementation.- III Special Applications to Discrete and Continuous Nonconvex Programs.- 10 Applications to Discrete Problems.- 11 Applications to Continuous Problems.- References.

最近チェックした商品