Optimization with Multivalued Mappings : Theory, Applications and Algorithms (Springer Optimization and Its Applications)

個数:

Optimization with Multivalued Mappings : Theory, Applications and Algorithms (Springer Optimization and Its Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 288 p.
  • 言語 ENG
  • 商品コード 9781441941671
  • DDC分類 511

Full Description

In the field of nondifferentiable nonconvex optimization, one of the most intensely investigated areas is that of optimization problems involving multivalued mappings in constraints or as the objective function. This book focuses on the tremendous development in the field that has taken place since the publication of the most recent volumes on the subject. The new topics studied include the formulation of optimality conditions using different kinds of generalized derivatives for set-valued mappings (such as, for example, the coderivative of Mordukhovich), the opening of new applications (e.g., the calibration of water supply systems), or the elaboration of new solution algorithms (e.g., smoothing methods).

The book is divided into three parts. The focus in the first part is on bilevel programming. The chapters in the second part contain investigations of mathematical programs with equilibrium constraints. The third part is on multivalued set-valued optimization. The chapters were written by outstanding experts in the areas of bilevel programming, mathematical programs with equilibrium (or complementarity) constraints (MPEC), and set-valued optimization problems.

Contents

Bilevel Programming.- Optimality conditions for bilevel programming problems.- Path-based formulations of a bilevel toll setting problem.- Bilevel programming with convex lower level problems.- Optimality criteria for bilevel programming problems using the radial subdifferential.- On approximate mixed Nash equilibria and average marginal functions for two-stage three-players games.- Mathematical Programs with Equilibrium Constraints.- A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constraints.- On the use of bilevel programming for solving a structural optimization problem with discrete variables.- On the control of an evolutionary equilibrium in micromagnetics.- Complementarity constraints as nonlinear equations: Theory and numerical experience.- A semi-infinite approach to design centering.- Set-Valued Optimization.- Contraction mapping fixed point algorithms for solving multivalued mixed variational inequalities.- Optimality conditions for a d.c. set-valued problem via the extremal principle.- First and second order optimality conditions in set optimization.

最近チェックした商品