Cost-Sensitive Machine Learning

個数:

Cost-Sensitive Machine Learning

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 332 p./サイズ 100 illus.
  • 言語 ENG
  • 商品コード 9781439839256
  • DDC分類 006.31

Full Description

In machine learning applications, practitioners must take into account the cost associated with the algorithm. These costs include:


Cost of acquiring training data

Cost of data annotation/labeling and cleaning

Computational cost for model fitting, validation, and testing

Cost of collecting features/attributes for test data

Cost of user feedback collection

Cost of incorrect prediction/classification



Cost-Sensitive Machine Learning is one of the first books to provide an overview of the current research efforts and problems in this area. It discusses real-world applications that incorporate the cost of learning into the modeling process.

The first part of the book presents the theoretical underpinnings of cost-sensitive machine learning. It describes well-established machine learning approaches for reducing data acquisition costs during training as well as approaches for reducing costs when systems must make predictions for new samples. The second part covers real-world applications that effectively trade off different types of costs. These applications not only use traditional machine learning approaches, but they also incorporate cutting-edge research that advances beyond the constraining assumptions by analyzing the application needs from first principles.

Spurring further research on several open problems, this volume highlights the often implicit assumptions in machine learning techniques that were not fully understood in the past. The book also illustrates the commercial importance of cost-sensitive machine learning through its coverage of the rapid application developments made by leading companies and academic research labs.

Contents

THEORECTICAL UNDERPINNINGS OF COST-SENSTIVE MACHINE LEARNING: Algorithms for Active Learning. Semi-Supervised Learning: Some Recent Advances. Transfer Learning, Multi-Task Learning, and Cost-Sensitive Learning. Cost-Sensitive Cascades. Selective Data Acquisition for Machine Learning. COST-SENSITIVE MACHINE LEARNING APPLICATIONS: Minimizing Annotation Costs in Visual Category Learning. Reliability and Redundancy: Reducing Error Cost in Medical Imaging. Cost-Sensitive Learning in Computational Advertising. Cost-Sensitive Machine Learning for Information Retrieval. Index.

最近チェックした商品