Wind Energy Systems : Control Engineering Design

個数:

Wind Energy Systems : Control Engineering Design

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 632 p.
  • 言語 ENG
  • 商品コード 9781439821794
  • DDC分類 621.312136

Full Description

Presenting the latest developments in the field, Wind Energy Systems: Control Engineering Design offers a novel take on advanced control engineering design techniques for wind turbine applications. The book introduces concurrent quantitative engineering techniques for the design of highly efficient and reliable controllers, which can be used to solve the most critical problems of multi-megawatt wind energy systems.

This book is based on the authors' experience during the last two decades designing commercial multi-megawatt wind turbines and control systems for industry leaders, including NASA and the European Space Agency. This work is their response to the urgent need for a truly reliable concurrent engineering methodology for the design of advanced control systems. Outlining a roadmap for such a coordinated architecture, the authors consider the links between all aspects of a multi-megawatt wind energy project, in which the wind turbine and the control system must be cooperatively designed to achieve an optimized, reliable, and successful system.



Look inside for information about the QFT Control Toolbox for Matlab, the software developed by the author to facilitate the QFT robust control design (see also the link at codypower.com).

The textbook's big-picture insights can help students and practicing engineers control and optimize a wind energy system, in which large, flexible, aerodynamic structures are connected to a demanding variable electrical grid and work automatically under very turbulent and unpredictable environmental conditions. The book covers topics including robust QFT control, aerodynamics, mechanical and electrical dynamic modeling, economics, reliability, and efficiency. It also addresses standards, certification, implementation, grid integration, and power quality, as well as environmental and maintenance issues.To reinforce understanding, the authors present real examples of experimentation with commercial multi-megawatt direct-drive wind turbines, as well as on-shore, offshore, floating, and airborne wind turbine applications. They also offer a unique in-depth exploration of the quantitative feedback theory (QFT)—a proven, successful robust control technique for real-world applications—as well as advanced switching control techniques that help engineers exceed classical linear limitations.

Contents

Introduction

Part I: Advanced Robust Control Techniques: QFT and Nonlinear Switching

Introduction to QFT. MISO Analog QFT Control System. Discrete Quantitative Feedback Technique. Diagonal MIMO QFT. Non-Diagonal MIMO QFT. QFT for Distributed Parameter Systems. Nonlinear Switching Control Techniques.

Part II: Wind Turbine Control

Introduction to Wind Energy Systems. Standards and Certification for Wind Turbines. Wind Turbine Control Objectives and Strategies. Aerodynamics and Mechanical Modeling of Wind Turbines. Electrical Modeling of Wind Turbines. Advanced Pitch Control System Design. Experimental Results with the Direct-Drive Wind Turbine TWT-1.65. Blades Manufacturing: MIMO QFT Control for Industrial Furnaces. Smart Wind Turbine Blades. Offshore Wind Energy: Overview. Airborne Wind Energy Systems. Appendices. Problems. Answers to Selected Problems. References.

最近チェックした商品