Knowledge Discovery from Sensor Data

個数:

Knowledge Discovery from Sensor Data

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 215 p.
  • 言語 ENG
  • 商品コード 9781420082326
  • DDC分類 006.331

Full Description

As sensors become ubiquitous, a set of broad requirements is beginning to emerge across high-priority applications including disaster preparedness and management, adaptability to climate change, national or homeland security, and the management of critical infrastructures. This book presents innovative solutions in offline data mining and real-time analysis of sensor or geographically distributed data. It discusses the challenges and requirements for sensor data based knowledge discovery solutions in high-priority application illustrated with case studies. It explores the fusion between heterogeneous data streams from multiple sensor types and applications in science, engineering, and security.

Contents

A Probabilistic Framework for Mining Distributed Sensory Data Under Data Sharing Constraints. A General Framework for Mining Massive Data Streams. A Sensor Network Data Model for the Discovery of Spatio-Temporal Patterns. Requirements for Clustering Streaming Sensors. Principal Component Aggregation for Energy-Efficient Information Extraction in Wireless Sensor Networks. Anomaly Detection in Transportation Corridors Using Manifold Embedding. Fusion of Vision Inertial Data for Automatic Georeferencing. Electricity Load Forecast Using Data Streams Techniques. Missing Event Prediction in Sensor Data Streams Using Kalman Filters. Mining Temporal Relations in Smart Environment Data Using TempAl. Index.

最近チェックした商品