金属・合金における固相変態(第3版)<br>Phase Transformations in Metals and Alloys (3TH)

個数:
  • ポイントキャンペーン

金属・合金における固相変態(第3版)
Phase Transformations in Metals and Alloys (3TH)

  • ウェブストア価格 ¥13,302(本体¥12,093)
  • CRC Pr I Llc(2009/02発売)
  • 外貨定価 US$ 99.95
  • 秋の夜長 全店ポイント2倍キャンペーン(~9/23)
  • ポイント 240pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • ウェブストア価格 ¥13,360(本体¥12,146)
  • CRC Pr I Llc(2009/02発売)
  • 外貨定価 UK£ 74.99
  • 秋の夜長 全店ポイント2倍キャンペーン(~9/23)
  • ポイント 242pt
  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    海外からのお取り寄せの場合、弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 500 p.
  • 言語 ENG
  • 商品コード 9781420062106
  • DDC分類 669.94

基本説明

Defines specific type of phase transformations in terms of properties and composition of the mixture. Addresses recent developments in computer-aided calculations of phase diagrams. Prev. ed.:1992.

Full Description


Expanded and revised to cover developments in the field over the past 17 years, and now reprinted to correct errors in the prior printing, Phase Transformation in Metals and Alloys, Third Edition provides information and examples that better illustrate the engineering relevance of this topic. It supplies a comprehensive overview of specific types of phase transformations, supplemented by practical case studies of engineering alloys.New in the Third Edition:Computer-aided calculation of phase diagramsRecent developments in metallic glassesThe Scheil method of calculating a CCT diagram from a TTT diagramExpanded treatment of the nucleation and growth of polygonal ferrite and bainiteNew case studies covering copper precipitation hardening of very low carbon bainitic steel and very fine carbide-free bainite Detailed treatment of strain-induced martensite provides a theoretical background to transformation-induced plasticity (TRIP) steelsUnique Presentation Links Theory to ApplicationAdding new case studies, detailed examples, and exercises drawn from current applications, the third edition keeps the previous editions' popular easy-to -follow style and excellent mix of basic and advanced information, making it ideal for those new to the field. The book's unique presentation links basic understanding of theory with application in a gradually progressive yet exciting manner. Based on the author's teaching notes, the book takes a pedagogical approach and provides examples for applications and problems that can be readily used for exercises. PowerPoint (c) illustrations available with qualifying course adoptions

Table of Contents

Preface to the Third Edition                       xiii
Preface to the Second Edition xv
Preface to the First Edition xvii
Authors xix
Chapter 1 Thermodynamics and Phase Diagrams 1
1.1 Equilibrium 1
1.2 Single-Component Systems 4
1.2.1 Gibbs Free Energy as a Function of 4
Temperature
1.2.2 Pressure Effects 7
1.2.3 Driving Force for Solidification 9
1.3 Binary Solutions 11
1.3.1 Gibbs Free Energy of Binary Solutions 11
1.3.2 Ideal Solutions 13
1.3.3 Chemical Potential 15
1.3.4 Regular Solutions 17
1.3.5 Activity 21
1.3.6 Real Solutions 23
1.3.7 Ordered Phases 24
1.3.8 Intermediate Phases 26
1.4 Equilibrium in Heterogeneous Systems 28
1.5 Binary Phase Diagrams 31
1.5.1 Simple Phase Diagram 31
1.5.2 Systems with a Miscibility Gap 32
1.5.3 Ordered Alloys 33
1.5.4 Simple Eutectic Systems 34
1.5.5 Phase Diagrams Containing 34
Intermediate Phases
1.5.6 Gibbs Phase Rule 34
1.5.7 Effect of Temperature on Solid 39
Solubility
1.5.8 Equilibrium Vacancy Concentration 40
1.6 Influence of Interfaces on Equilibrium 42
1.7 Ternary Equilibrium 45
1.8 Additional Thermodynamic Relationships 50
for Binary Solutions
1.9 Computation of Phase Diagrams 52
1.9.1 Pure Stoichiometric Substances 52
1.9.2 Solution Phases 56
1.9.2.1 Substitutional Solutions 56
1.10 Kinetics of Phase Transformations 57
Exercises 58
References 60
Further Reading 61
Chapter 2 Diffusion 63
2.1 Atomic Mechanisms of Diffusion 65
2.2 Interstitial Diffusion 67
2.2.1 Interstitial Diffusion as a Random 67
Jump Process
2.2.2 Effect of Temperature裕hermal 69
Activation
2.2.3 Steady-State Diffusion 72
2.2.4 Nonsteady-State Diffusion 72
2.2.5 Solutions to the Diffusion Equation 74
2.2.5.1 Homogenization 74
2.2.5.2 Carburization of Steel 76
2.3 Substitutional Diffusion 78
2.3.1 Self-Diffusion 78
2.3.2 Vacancy Diffusion 83
2.3.3 Diffusion in Substitutional Alloys 84
2.3.4 Diffusion in Dilute Substitutional 92
Alloys
2.4 Atomic Mobility 93
2.5 Tracer Diffusion in Binary Alloys 95
2.6 Diffusion in Ternary Alloys 98
2.7 High-Diffusivity Paths 100
2.7.1 Diffusion along Grain Boundaries and 100
Free Surfaces
2.7.2 Diffusion along Dislocations 103
2.8 Diffusion in Multiphase Binary Systems 104
Exercises 106
References 109
Further Reading 110
Chapter 3 Crystal Interfaces and Microstructure 111
3.1 Interfacial Free Energy 112
3.2 Solid/Vapor Interfaces 113
3.3 Boundaries in Single-Phase Solids 117
3.3.1 Low-Angle and High-Angle Boundaries 118
3.3.2 Special High-Angle Grain Boundaries 121
3.3.3 Equilibrium in Polycrystalline 124
Materials
3.3.4 Thermally Activated Migration of 129
Grain Boundaries
3.3.5 Kinetics of Grain Growth 137
3.4 Interphase Interfaces in Solids 140
3.4.1 Interface Coherence 141
3.4.1.1 Fully Coherent Interfaces 141
3.4.1.2 Semicoherent Interfaces 143
3.4.1.3 Incoherent Interfaces 144
3.4.1.4 Complex Semicoherent Interfaces 145
3.4.2 Second-Phase Shape: Interfacial 147
Energy Effects
3.4.2.1 Fully Coherent Precipitates 147
3.4.2.2 Partially Coherent Precipitates 148
3.4.2.3 Incoherent Precipitates 150
3.4.2.4 Precipitates on Grain Boundaries 151
3.4.3 Second-Phase Shape: Misfit Strain 152
Effects
3.4.3.1 Fully Coherent Precipitates 152
3.4.3.2 Incoherent Inclusions 155
3.4.3.3 Platelike Precipitates 156
3.4.4 Coherency Loss 157
3.4.5 Glissile Interfaces 160
3.4.6 Solid/Liquid Interfaces 165
3.5 Interface Migration 167
3.5.1 Diffusion-Controlled and 170
Interface-Controlled Growth
Exercises 176
References 178
Further Reading 179
Chapter 4 Solidification 181
4.1 Nucleation in Pure Metals 181
4.1.1 Homogeneous Nucleation 182
4.1.2 Homogeneous Nucleation Rate 186
4.1.3 Heterogeneous Nucleation 188
4.1.4 Nucleation of Melting 192
4.2 Growth of a Pure Solid 193
4.2.1 Continuous Growth 193
4.2.2 Lateral Growth 194
4.2.3 Heat Flow and Interface Stability 197
4.3 Alloy Solidification 200
4.3.1 Solidification of Single-Phase Alloys 200
4.3.2 Eutectic Solidification 212
4.3.3 Off-Eutectic Alloys 218
4.3.4 Peritectic Solidification 220
4.4 Solidification of Ingots and Castings 221
4.4.1 Ingot Structure 222
4.4.2 Segregation in Ingots and Castings 225
4.4.3 Continuous Casting 226
4.5 Solidification of Fusion Welds 230
4.6 Solidification during Quenching from the 235
Melt
4.7 Metallic Glasses 236
4.7.1 Thermodynamics and Kinetics 237
4.8 Case Studies of Some Practical Castings 239
and Welds
4.8.1 Casting of Carbon and Low-Alloy Steels 239
4.8.2 Casting of High-Speed Steels 241
Exercises 247
References 249
Further Reading 249
Chapter 5 Diffusional Transformations in Solids 251
5.1 Homogeneous Nucleation in Solids 253
5.2 Heterogeneous Nucleation 259
5.2.1 Rate of Heterogeneous Nucleation 263
5.3 Precipitate Growth 265
5.3.1 Growth behind Planar Incoherent 266
Interfaces
5.3.2 Diffusion-Controlled Lengthening of 269
Plates or Needles
5.3.3 Thickening of Platelike Precipitates 271
5.4 Overall Transformation Kinetics: TTT 273
Diagrams
5.5 Precipitation in Age-Hardening Alloys 276
5.5.1 Precipitation in Aluminum砲opper 277
Alloys
5.5.2 Precipitation in Aluminum亡ilver 285
Alloys
5.5.3 Quenched-In Vacancies 286
5.5.4 Age Hardening 288
5.5.5 Spinodal Decomposition 290
5.5.6 Particle Coarsening 295
5.6 Precipitation of Ferrite from Austenite 299
5.6.1 Case Study: Ferrite Nucleation and 304
Growth
5.7 Cellular Precipitation 310
5.8 Eutectoid Transformations 314
5.8.1 Pearlite Reaction in Fe砲 Alloys 314
5.8.2 Bainite Transformation 319
5.8.3 Effect of Alloying Elements on 327
Hardenability
5.8.4 Continuous Cooling Diagrams 332
5.8.5 Fibrous and Interphase Precipitation 334
in Alloy Steels
5.8.6 Rule of Scheil 336
5.9 Massive Transformations 337
5.10 Ordering Transformations 342
5.11 Case Studies 349
5.11.1 Titanium Forging Alloys 349
5.11.2 Weldability of Low-Carbon and 353
Microalloyed Rolled Steels
5.11.3 Very Low-Carbon Bainitic Steel with 356
High Strength and Toughness
5.11.4 Very Fine Bainite 357
Exercises 360
References 362
Further Reading 364
Chapter 6 Diffusionless Transformations 367
6.1 Characteristics of Diffusionless 368
Transformations
6.1.1 Solid Solution of Carbon in Iron 371
6.2 Martensite rv,,tallograplw 373
6.2.1 Bain Model of the fcc   bct 375
Transformation
6.2.2 Comparison of Crystallographic Theory 379
with Experimental Results
6.3 Theories of Martensite Nucleation 380
6.3.1 Formation of Coherent Nuclei of 381
Martensite
6.3.2 Role of Dislocations in Martensite 384
Nucleation
6.3.3 Dislocation Strain Energy Assisted 387
Transformation
6.4 Martensite Growth 391
6.4.1 Growth of Lath Martensite 392
6.4.2 Plate Martensite 394
6.4.3 Stabilization 397
6.4.4 Effect of External Stresses 397
6.4.5 Role of Grain Size 397
6.5 Premartensite Phenomena 398
6.6 Tempering of Ferrous Martensites 399
6.7 Case Studies 408
6.7.1 Carbon and Low-Alloy Quenched and 408
Tempered Steels
6.7.2 Controlled Transformation Steels 409
6.7.3 TRIP-Assisted Steels 411
6.7.4 "Shape-Memory" Metal: Nitinol 415
Exercises 417
References 418
Further Reading 420
Solutions to Exercises 421
Index 491