Causal Analysis in Population Studies : Concepts, Methods, Applications (The Springer Series on Demographic Methods and Population Analysis 23) (2009. VIII, 252 S. 235 mm)

個数:

Causal Analysis in Population Studies : Concepts, Methods, Applications (The Springer Series on Demographic Methods and Population Analysis 23) (2009. VIII, 252 S. 235 mm)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 251 p.
  • 言語 ENG
  • 商品コード 9781402099663

Full Description

The central aim of many studies in population research and demography is to explain cause-effect relationships among variables or events. For decades, population scientists have concentrated their efforts on estimating the 'causes of effects' by applying standard cross-sectional and dynamic regression techniques, with regression coefficients routinely being understood as estimates of causal effects. The standard approach to infer the 'effects of causes' in natural sciences and in psychology is to conduct randomized experiments. In population studies, experimental designs are generally infeasible.

In population studies, most research is based on non-experimental designs (observational or survey designs) and rarely on quasi experiments or natural experiments. Using non-experimental designs to infer causal relationships—i.e. relationships that can ultimately inform policies or interventions—is a complex undertaking. Specifically, treatment effects can be inferred from non-experimental data with a counterfactual approach. In this counterfactual perspective, causal effects are defined as the difference between the potential outcome irrespective of whether or not an individual had received a certain treatment (or experienced a certain cause). The counterfactual approach to estimate effects of causes from quasi-experimental data or from observational studies was first proposed by Rubin in 1974 and further developed by James Heckman and others.

This book presents both theoretical contributions and empirical applications of the counterfactual approach to causal inference.

Contents

Causal Analysis in Population Studies.- Issues in the Estimation of Causal Effects in Population Research, with an Application to the Effects of Teenage Childbearing.- Sequential Potential Outcome Models to Analyze the Effects of Fertility on Labor Market Outcomes.- Structural Modelling, Exogeneity, and Causality.- Causation as a Generative Process. The Elaboration of an Idea for the Social Sciences and an Application to an Analysis of an Interdependent Dynamic Social System.- Instrumental Variable Estimation for Duration Data.- Female Labour Participation with Concurrent Demographic Processes: An Estimation for Italy.- New Estimates on the Effect of Parental Separation on Child Health.- Assessing the Causal Effect of Childbearing on Household Income in Albania.- Causation and Its Discontents.

最近チェックした商品