伊藤確率微分方程式によるモデリング<br>Modeling with Ito Stochastic Differential Equations (Mathematical Modelling : Theory and Applications) 〈Vol.22〉

個数:

伊藤確率微分方程式によるモデリング
Modeling with Ito Stochastic Differential Equations (Mathematical Modelling : Theory and Applications) 〈Vol.22〉

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 230 p.
  • 言語 ENG
  • 商品コード 9781402059520

基本説明

This modelling procedure is thoroughly explained and illustrated for randomly varying systems in population biology, chemistry, physics, engineering, and finance.

Full Description

Dynamical systems with random influences occur throughout the physical, biological, and social sciences. By carefully studying a randomly varying system over a small time interval, a discrete stochastic process model can be constructed. Next, letting the time interval shrink to zero, an Ito stochastic differential equation model for the dynamical system is obtained.

This modeling procedure is thoroughly explained and illustrated for randomly varying systems in population biology, chemistry, physics, engineering, and finance. Introductory chapters present the fundamental concepts of random variables, stochastic processes, stochastic integration, and stochastic differential equations. These concepts are explained in a Hilbert space setting which unifies and simplifies the presentation. Computer programs, given throughout the text, are useful in solving representative stochastic problems. Analytical and computational exercises are provided in each chapter that complement the material in the text.

Modeling with Itô Stochastic Differential Equations is useful for researchers and graduate students. As a textbook for a graduate course, prerequisites include probability theory, differential equations, intermediate analysis, and some knowledge of scientific programming.

Contents

Random Variables.- Stochastic Processes.- Stochastic Integration.- Stochastic Differential Equations.- Modeling.

最近チェックした商品