システム生物学のためのAI法およびツール<br>Artificial Intelligence Methods and Tools for Systems Biology (Computational Biology Vol.5) (2004. XIII, 221 p. 23,5 cm)

個数:

システム生物学のためのAI法およびツール
Artificial Intelligence Methods and Tools for Systems Biology (Computational Biology Vol.5) (2004. XIII, 221 p. 23,5 cm)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 221 p.
  • 商品コード 9781402028595

基本説明

A design blueprint, user guide, research agenda, and communication platform places an emphasis on the molecular dimension of life phenomena and in one chapter on anatomical and functional modeling of the brain.

Full Description

This book provides simultaneously a design blueprint, user guide, research agenda, and communication platform for current and future developments in artificial intelligence (AI) approaches to systems biology. It places an emphasis on the molecular dimension of life phenomena and in one chapter on anatomical and functional modeling of the brain.

As design blueprint, the book is intended for scientists and other professionals tasked with developing and using AI technologies in the context of life sciences research. As a user guide, this volume addresses the requirements of researchers to gain a basic understanding of key AI methodologies for life sciences research. Its emphasis is not on an intricate mathematical treatment of the presented AI methodologies. Instead, it aims at providing the users with a clear understanding and practical know-how of the methods. As a research agenda, the book is intended for computer and life science students, teachers, researchers, and managers who want to understand the state of the art of the presented methodologies and the areas in which gaps in our knowledge demand further research and development. Our aim was to maintain the readability and accessibility of a textbook throughout the chapters, rather than compiling a mere reference manual. The book is also intended as a communication platform seeking to bride the cultural and technological gap among key systems biology disciplines. To support this function, contributors have adopted a terminology and approach that appeal to audiences from different backgrounds.

Contents

Lazy Learning for Predictive Toxicology based on a Chemical Ontology.- QSAR Modeling of Mutagenicity on Non-Congeneric Sets of Organic Compounds.- Characterizing Gene Expression Time Series using a Hidden Markov Model.- Analysis of Large-Scale mRNA Expression Data Sets by Genetic Algorithms.- A Data-Driven, Flexible Machine Learning Strategy for the Classification of Biomedical Data.- Cooperative Metaheuristics for Exploring Proteomic Data.- Integrating Gene Expression Data, Protein Interaction Data, and Ontology-Based Literature Searches.- Ontologies in Bioinformatics and Systems Biology.- Natural Language Processing and Systems Biology.- Systems Level Modeling of Gene Regulatory Networks.- Computational Neuroscience for Cognitive Brain Functions.

最近チェックした商品