群理論の力学と物理学への応用<br>Applications of the Theory of Groups in Mechanics and Physics (Fundamental Theories of Physics Vol.140) (2004. 453 p.)

個数:

群理論の力学と物理学への応用
Applications of the Theory of Groups in Mechanics and Physics (Fundamental Theories of Physics Vol.140) (2004. 453 p.)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 453 p.
  • 言語 ENG
  • 商品コード 9781402020469

基本説明

A new edition of a volume published in 1985, ('Aplicatii ale teoriei grupurilor in mecanica si fízica', Editura Tehnica, Bucharest, Romania).

Full Description

The notion of group is fundamental in our days, not only in mathematics, but also in classical mechanics, electromagnetism, theory of relativity, quantum mechanics, theory of elementary particles, etc. This notion has developed during a century and this development is connected with the names of great mathematicians as E. Galois, A. L. Cauchy, C. F. Gauss, W. R. Hamilton, C. Jordan, S. Lie, E. Cartan, H. Weyl, E. Wigner, and of many others. In mathematics, as in other sciences, the simple and fertile ideas make their way with difficulty and slowly; however, this long history would have been of a minor interest, had the notion of group remained connected only with rather restricted domains of mathematics, those in which it occurred at the beginning. But at present, groups have invaded almost all mathematical disciplines, mechanics, the largest part of physics, of chemistry, etc. We may say, without exaggeration, that this is the most important idea that occurred in mathematics since the invention of infinitesimal calculus; indeed, the notion of group expresses, in a precise and operational form, the vague and universal ideas of regularity and symmetry. The notion of group led to a profound understanding of the character of the laws which govern natural phenomena, permitting to formulate new laws, correcting certain inadequate formulations and providing unitary and non­ contradictory formulations for the investigated phenomena.

Contents

1. Elements of General Theory of Groups.- 1 Basic notions.- 2 Topological groups.- 3 Particular Abelian groups.- 2. Lie Groups.- 1 The SO(3) group.- 2 The SU(2) group.- 3 The SU(3) and GL(n, ?) groups.- 4 The Lorentz group.- 3. Symmetry Groups of Differential Equations.- 1 Differential operators.- 2 Invariants and differential equations.- 3 Symmetry groups of certain differential equations.- 4 Methods of study of certain differential equations.- 4. Applications in Mechanics.- 1 Classical models of mechanics.- 2 Symmetry laws and applications.- 3 Space-time symmetries. Conservation laws.- 4 Applications in the theory of vibrations.- 5. Applications in the Theory of Relativity and Theory of Classical Fields.- 1 Theory of Special Relativity.- 2 Theory of electromagnetic field.- 3 Theory of gravitational field.- 6. Applications in Quantum Mechanics and Physics of Elementary Particles.- 1 Non-relativistic quantum mechanics.- 2 Internal symmetries of elementary particles.- 3 Relativistic quantum mechanics.- References.

最近チェックした商品