敵対的機械学習:信頼性の高いAIのためのしくみと脆弱性、戦略<br>Adversarial Machine Learning : Mechanisms, Vulnerabilities, and Strategies for Trustworthy AI

個数:
  • 予約

敵対的機械学習:信頼性の高いAIのためのしくみと脆弱性、戦略
Adversarial Machine Learning : Mechanisms, Vulnerabilities, and Strategies for Trustworthy AI

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 336 p.
  • 言語 ENG
  • 商品コード 9781394402038

Full Description

Enables readers to understand the full lifecycle of adversarial machine learning (AML) and how AI models can be compromised

Adversarial Machine Learning is a definitive guide to one of the most urgent challenges in artificial intelligence today: how to secure machine learning systems against adversarial threats.

This book explores the full lifecycle of adversarial machine learning (AML), providing a structured, real-world understanding of how AI models can be compromised—and what can be done about it.

The book walks readers through the different phases of the machine learning pipeline, showing how attacks emerge during training, deployment, and inference. It breaks down adversarial threats into clear categories based on attacker goals—whether to disrupt system availability, tamper with outputs, or leak private information. With clarity and technical rigor, it dissects the tools, knowledge, and access attackers need to exploit AI systems.

In addition to diagnosing threats, the book provides a robust overview of defense strategies—from adversarial training and certified defenses to privacy-preserving machine learning and risk-aware system design. Each defense is discussed alongside its limitations, trade-offs, and real-world applicability.

In Adversarial Machine Learning, readers will gain a comprehensive view of today's most dangerous attack methods:

Evasion attacks that manipulate inputs to deceive AI predictions
Poisoning attacks that corrupt training data or model updates
Backdoor and trojan attacks that embed malicious triggers
Privacy attacks that reveal sensitive data through model interaction and prompt injection
Generative AI attacks that exploit the new wave of large language models

Blending technical depth with practical insight, Adversarial Machine Learning equips developers, security engineers, and AI decision-makers with the knowledge they need to understand the adversarial landscape and defend their systems with confidence.

最近チェックした商品