一般相対性自習ガイド<br>Untangling General Relativity : The Intuitive Self-Study Guide

個数:
  • 予約

一般相対性自習ガイド
Untangling General Relativity : The Intuitive Self-Study Guide

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 336 p.
  • 言語 ENG
  • 商品コード 9781394355853

Full Description

An easy-to-read introduction to Einstein's theory of general relativity

In Untangling General Relativity, Simon Sherwood explains the details of general relativity with clarity, enthusiasm, and a sense of fun. Designed to be accessible to non-experts, the book combines intuitive explanations with the essential mathematics needed for a deep understanding of the subject. Sherwood introduces that maths gradually and clearly, in a step-by-step program designed to expand your appreciation and grasp of general relativity.

Untangling General Relativity serves as an effective springboard for more in-depth studies. It lays the groundwork for mastering the advanced topics covered in relativity textbooks and university physics courses.

Readers will find:

A thorough introduction to general relativity, including the interpretation of gravity as curved spacetime and a full derivation of Einstein's field equations
Comprehensive explanations of the spacetime metric, the equivalence principle, the geodesic equation, and the energy-momentum and curvature tensors
Vacuum curvature: the Schwarzschild and Kerr metrics, black holes, white holes, event horizons, and gravitational waves
Cosmology: the Friedmann equations, dark matter and energy, the Big Bang, inflation and an overview of current efforts to develop a quantum theory of gravity

Perfect for undergraduate students preparing to take a university-level physics course dealing with general relativity for the first time, Untangling General Relativity will also benefit students of the natural sciences and instructors and educators with a professional or academic interest in the subject.

Contents

Acknowledgements xii Introduction xiii

Module I The Essentials 1

1 Overview 3

1.1 Einstein Field Equations 3

1.2 Gravity as Curved Spacetime 5

1.3 The Equivalence Principle 6

1.4 Working Out the Details 7

1.5 Gimme, Gimme, Gimme... Some Hard Evidence 7

1.6 The Cosmological Constant 8

1.7 Vacuum Curvature 8

1.8 Cosmology 9

1.9 The Field Equations in Full Form 11

2 Special Relativity 13

2.1 Relativity 13

2.2 The Speed of Light Is Constant: So What? 14

2.3 The Invariant Interval Equation 15

2.4 Time Dilation Quantified 16

2.5 Length Contraction 17

2.6 Leading Clocks Lag 18

2.7 Adding Things Up: An Apparent Paradox 19

2.8 Energy and Momentum 20

2.9 Energy, Momentum, Time and Space 21

2.10 Summary 22

3 The Metric 23

3.1 The Minkowski Metric 23

3.2 Einstein's Tensor and the Metric 25

3.3 Distortion in the Metric 25

3.4 Curvature, Dung Balls and a First Hint of Gravity 28

3.5 A Mathematical Challenge 29

3.6 Upper and Lower Indices 30

3.7 Raising/Lowering Indices with Wonky Metrics (Off-Diagonal Terms) 32

3.8 Summary 34

4 Covariant Derivatives and Christoffel Symbols 37

4.1 Covariant Derivatives 37

4.2 Christoffel Symbols 39

4.3 Summary 43

5 The Geodesic Equation and Gravity 45

5.1 A 2-D Model of Time Dilation and Gravitational Acceleration 45

5.2 The Geodesic Equation 46

5.3 What Happens to the Dung Beetle? 48

5.4 Albert Versus Isaac: Differences Emerge 49

5.5 Albert Versus Isaac: Seeing the Light 51

5.6 A Victory for Einstein 52

5.7 Time Dilation: Hafele-Keating and GPS 53

5.8 Geodesic Summary 54

5.9 Tensors: Why...? What...? How...? 55

5.10 Where's the Fridge? 55

6 The Equivalence Principle and Ricci Tensor 57

6.1 The Equivalence Principle 57

6.2 From Newton's Gravity to Geodesic Separation 60

6.3 The Magnificent Ricci Tensor 62

6.4 An Intuitive Explanation of the Ricci Tensor 62

6.5 Vacuum Curvature: An Apparent Paradox 64

6.6 The Ricci Scalar 65

6.7 Summary 65

7 The Maths of Curvature 67

7.1 Parallel Transport 67

7.2 The Riemann Tensor 68

7.3 Calculating the Ricci Tensor 72

7.4 Calculating the Ricci Scalar 73

7.5 Example Calculations: Aarrgghh! 73

7.6 Hunting for Vacuum Solutions 76

7.7 Summary 77

8 The Energy-Momentum Tensor 79

8.1 Tensor Indices 79

8.2 Introduction to the Energy-Momentum Tensor 80

8.3 Mass Density Flow of Dust 81

8.4 Energy-Momentum Tensor of Dust 83

8.5 Symmetry of the Energy-Momentum Tensor 84

8.6 Covariant Derivative of the Energy-Momentum Tensor 84

8.7 Energy-Momentum Tensor of a Perfect Fluid 85

8.8 Summary 86

9 Deriving the Einstein Field Equations 89

9.1 Why Does Energy-Momentum Curve Spacetime? 89

9.2 Generalising Coordinates 90

9.3 The Ricci Tensor: Why So Complicated? 91

9.4 Deriving the Ricci Relationship 92

9.5 What Does This Tell Us About Spacetime Curvature? 94

9.6 Curvature Footprints 96

9.7 Summary 97

10 Einstein Field Equations: The Full Story 99

10.1 Einstein's Weak Field Metric 99

10.2 Energy-Momentum, Curvature and the Vacuum 103

10.3 Calculating the Value of Einstein's Gravitational Constant 103

10.4 The Poisson Equation (Optional Refresher) 104

10.5 The EFEs in Full Form (Almost!) 106

10.6 The Cosmological Constant 106

10.7 Summary 107

11 Module Summary and Conventions 109

11.1 Module Summary 109

11.2 The Field Equations in Full Form (Finally!) 111

11.3 Why Does Energy-Momentum Distort Spacetime? 112

11.4 Conventions (Optional) 112

11.5 Stationary Action Derivation of the EFEs 114

11.6 Final Thoughts on This Module 115

11.7 Module Memory Jogger 116

Module II Vacuum Curvature 119

12 The Schwarzschild Metric: Derivation 121

12.1 Metric Symmetries: A Diagonal Metric 122

12.2 Ricci and Riemann Symmetries 123

12.3 Simon's Ricci Cheat Sheet 124

12.4 Deriving the Schwarzschild Metric: Relating Time and Space 126

12.5 Birkhoff's Theorem 127

12.6 The Schwarzschild Metric 127

12.7 Summary 128

12.8 Why Do We Care? 129

12.9 Schwarzschild with Cosmological Constant (Optional) 129

13 Schwarzschild and Black Holes 133

13.1 Schwarzschild Revisited 134

13.2 Black Holes: Overview 134

13.3 Minky and Schwart 136

13.4 Proper Acceleration 137

13.5 White Dwarfs and Neutron Stars 138

13.6 Falling into a Black Hole 140

13.7 Time: For Minky the Clock Stops 142

13.8 A Simple Illustrative Model 143

13.9 Space: Schwarzschild Radial Coordinate 145

13.10 Inside the Event Horizon 147

13.11 Summary 148

14 Orbits and Conserved Quantities 151

14.1 Noether, Killing Vectors and Conservation Laws 151

14.2 Conserved Quantities Along Geodesics 153

14.3 Conserved Quantities of the Schwarzschild Metric 154

14.4 Radial Plunge 155

14.5 Angular Momentum and Rotational Energy 157

14.6 A Few Words 158

14.7 Orbits and Trajectories 159

14.8 Quasars 163

14.9 Summary 165

15 Revisiting Einstein's Success (Optional) 167

15.1 The Deflection of Light and Gravitational Lensing 167

15.2 The Precession of Mercury 170

15.3 The Aftermath 174

16 Schwarzschild: Other Coordinates 175

16.1 Introduction for Dummies 175

16.2 Eddington-Finkelstein Coordinates 176

16.3 Intuitive EF 177

16.4 Crossing the Black Hole Event Horizon 179

16.5 White Holes 180

16.6 Kruskal-Szekeres Coordinates 181

16.7 The KS Big Picture Schwarzschild Diagram 183

16.8 Penrose-Carter Diagrams 185

16.9 Schwarzschild Metric: Final Thoughts 186

17 Kerr Metric: An Intuitive Introduction 189

17.1 The Kerr Metric Using BL Coordinates 190

17.2 Why Angular Momentum Matters 191

17.3 An Oblate Spheroid 193

17.4 BL Radial Coordinate Mathematics (Optional) 194

17.5 Minkowski Spacetime Using the BL Radial Coordinate 196

17.6 The Other BL Coordinates 196

17.7 Summary 196

18 Kerr Black Holes 199

18.1 The Outer Event Horizon 199

18.2 The Inner Event Horizon 201

18.3 Underlying Riemann Curvature 201

18.4 The Kerr Singularity (Ringularity) 202

18.5 Frame-Dragging 203

18.6 The Ergosphere 204

18.7 Penrose, Blandford-Znajek and Quasars (Revisited) 205

18.8 Extremal Black Holes and Cosmic Censorship 206

18.9 Conserved Quantities and Contorted Orbits 207

18.10 Maximal Extension of the Kerr Metric 208

18.11 Summary 210

18.12 Cosmic Censorship and the Kerr Metric (Optional) 211

19 Gravitational Waves 215

19.1 Einstein's Flip-Flop 215

19.2 The Maths of GW Radiation 216

19.3 Tell Me More About Gravitational Waves 220

19.4 Chirp GW150914: A Case Study 221

19.5 Chirp GW170817 222

19.6 Pulsar Timing Arrays 223

19.7 A Note on Hawking Radiation 223

19.8 Summary 226

20 Module Summary: Vacuum Curvature 227

20.1 Schwarzschild Metric 227

20.2 Kerr Metric 228

20.3 Gravitational Waves and Hawking Radiation 229

20.4 Module Memory Jogger 230

Module III Cosmology 233

21 The Friedmann-Robertson-Walker Metric 235

21.1 The Cosmological Principle 235

21.2 The Hubble Parameter 236

21.3 The Expanding Universe: A Newtonian View 237

21.4 General Relativity View: A Co-Moving Frame 237

21.5 Introduction to 3-D Spatial Curvature 239

21.6 Spatial Curvature in the FRW Metric (Optional) 240

21.7 The FRW Metric 242

21.8 Ricci Curvature and the Cosmological Principle 242

21.9 Summary 243

22 The Friedmann Equations 245

22.1 FRW Metric: Ricci Calculation 245

22.2 Deriving the Friedmann Equations 247

22.3 The Cosmic Rest Frame 249

22.4 Energy-Density and Expansion 250

22.5 Dominant Relationships 253

22.6 The Accelerating Effect of Vacuum Energy 254

22.7 Critical Energy-Density 254

22.8 Summary 255

23 Welcome to the Dark Side 257

23.1 Spatial Curvature: Feeling Flat 257

23.2 Dark Matter 258

23.3 Modelling the Universe 259

23.4 Radiation's Trivial Contribution 261

23.5 The Cosmic Age Problem: Globular Clusters 261

23.6 The Accelerating Universe 262

23.7 Summary: The Energy Mix of the Universe 265

23.8 What Is Dark (Vacuum) Energy? 266

24 After the Big Bang 269

24.1 Dating the Early Universe 270

24.2 Baryogenesis (Protons and Neutrons Form) 271

24.3 Nuclear Fusion (Light Atomic Nuclei Form) 272

24.4 Cosmic Microwave Background 273

24.5 A Star Is Born 274

24.6 Our Place in the Cosmic Web 275

24.7 Horizons and the Fate of the Universe 277

24.8 Summary 279

25 Inflation 281

25.1 Arguments for Inflation 282

25.2 Introduction to Inflation 285

25.3 The Inflaton Field 286

25.4 How Much Inflation Had to Occur? 287

25.5 The Maths Behind the Inflaton Field (Optional) 289

25.6 Quantum Field Fluctuations 291

25.7 Evidence for Inflation in the CMB 292

25.8 The Inflationary Multiverse 293

25.9 Summary 294

26 Interpreting the CMB (Optional) 295

26.1 Underlying Causes of CMB Temperature Variation 296

26.2 The CMB Power Spectrum 296

26.3 Super-Horizon Anisotropy 298

26.4 Effect of Baryon Acoustic Oscillations 298

26.5 Peak-1 and Measuring Flatness 299

26.6 Comparing Peaks: Another Measure of Baryon Density 299

27 Module Summary: Cosmology 301

27.1 Theory 301

27.2 Observation 302

27.3 From the Big Bang to Today 304

27.4 Some Bits That Might Not Fit 304

27.5 Inflation 305

27.6 Cosmology: Watch the News 306

27.7 Module Memory Jogger 307

28 The Big Challenge 309

28.1 General Relativity Versus Quantum Mechanics 309

28.2 The Challenge 310

28.3 String Theory 310

28.4 Loop Quantum Gravity 312

28.5 Spacetime Is Doomed 314

28.6 Entropic Gravity 315

28.7 Postquantum Gravity 316

28.8 Toodle-Pip! 318

Index 319

最近チェックした商品