Enhancing Hybrid Nanodevice Fabrication Efficiency Using Machine Learning

個数:
電子版価格
¥30,153
  • 予約
  • 電子版あり

Enhancing Hybrid Nanodevice Fabrication Efficiency Using Machine Learning

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 496 p.
  • 言語 ENG
  • 商品コード 9781394355280

Full Description

Gain a competitive edge in the semiconductor industry with this essential guide, which provides the practical insights and machine learning techniques needed to optimize the fabrication of hybrid nanodevices for integrated circuits.

Enhancing Hybrid Nanodevice Fabrication Efficiency Using Machine Learning explores the intersection of advanced manufacturing techniques and machine learning applications in the field of nanotechnology, specifically focusing on hybrid nanodevices for integrated circuits. This book provides a comprehensive understanding of how machine learning algorithms and techniques can optimize the fabrication processes of hybrid nanodevices, improving their efficiency, reliability, and performance in integrated circuit applications. The book begins with an introduction to the fundamentals of hybrid nanodevice fabrication and the role of machine learning in enhancing these processes. It then delves into various machine learning algorithms and models used for process optimization, quality control, and predictive maintenance in integrated circuit fabrication. Case studies and practical examples illustrate real-world applications of machine learning in improving yield, reducing costs, and accelerating time-to-market for hybrid nanodevices. It also addresses the pressing need for a comprehensive guide on machine learning applications in nanodevice fabrication. It provides researchers, engineers, and industry professionals with practical insights for implementing machine learning techniques to tackle challenges such as variability reduction, defect detection, and process optimization. By bridging the gap between theory and practice, the book equips readers with the knowledge and tools necessary to leverage machine learning for a competitive advantage in the semiconductor industry.

最近チェックした商品