Next-Generation Recommendation Systems : A Comprehensive Guide to Enabling Technologies and Tools and their Business Benefits

個数:
  • 予約

Next-Generation Recommendation Systems : A Comprehensive Guide to Enabling Technologies and Tools and their Business Benefits

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 624 p.
  • 言語 ENG
  • 商品コード 9781394351541

Full Description

A detailed guide to building cutting-edge recommendation systems

In Next-Generation Recommendation Systems: A Comprehensive Guide to Enabling Technologies and Tools and their Business Benefits, a team of experienced technologists and educators, each with a proven track record in the field, delivers an expert guide to building robust recommendation systems that can interface with complex databases. The authors' deep understanding of the subject matter is evident as they explain how to use the latest AI technologies, including LLMs, graph neural networks, diffusion models, and generative adversarial networks, to create recommendation engines that users enjoy and that drive business revenue.

The book does not just delve into theoretical concepts, but also connects them to advanced implementation techniques. It demonstrates the application of practical and adaptable techniques, such as graph embeddings and Bayesian networks, to solve real-world problems faced by platform users and businesses. Readers will find the knowledge and tools to tackle these challenges head-on.

Comprehensive coverage of practical generative AI techniques, including large language models and diffusion models
Detailed exploration of graph neural networks and knowledge graph embeddings to solve common recommendation engine problems
Practical guidance on implementing generative adversarial networks and variational autoencoders to address mode collapse and information bottleneck challenges
In-depth analysis of hybrid recommendation architectures that combine content-based, collaborative, and knowledge-based filtering

Real-world deployment strategies using cloud-native computing environments are not just theoretical concepts in this book. They are actionable strategies that have been tested and proven effective. This emphasis on real-world applicability will reassure readers about the book's relevance to their professional or academic pursuits.

Perfect for data scientists, AI specialists, software engineers, architects, and graduate students, Next-Generation Recommendation Systems is an essential, up-to-date resource for everyone involved in the design, deployment, and optimization of recommendation systems that connect to large, complex datasets.

最近チェックした商品