Porous Membranes : Breakthroughs in Manufacturing and Applications

個数:
電子版価格
¥28,616
  • 電子版あり

Porous Membranes : Breakthroughs in Manufacturing and Applications

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 368 p.
  • 言語 ENG
  • 商品コード 9781394303458
  • DDC分類 620.116

Full Description

The book is essential for anyone seeking a deep understanding of porous membranes, as it offers valuable insights into manufacturing methods, innovative applications, and strategies for optimizing membrane design to meet critical project demands across various fields.

Porous Membranes: Breakthroughs in Manufacturing and Applications is a comprehensive guide to discovering the world of porous membranes and their applications. This volume gives a global perspective of basic concepts, featuring manufacturing approaches and potential applications where control of pore size and shape, and distribution can be decisive for the success of a membrane process. In-depth explanations elaborate on the key role assigned to a membrane's pores in directing events that are crucial for the mandatory targets imposed by a project's requirements. Further, discussions on how to manage and characterize materials from a molecular to macro scale to achieve highly defined architecture to enable high-performing separations are explored. Advances and innovation are central themes, providing useful solutions to current critical aspects and existing bottlenecks in the control of structural and chemical features of targeted membranes. This cross-disciplinary discussion opens new routes for membrane science in expanding fields, including water management, environmental remediation, recovery of targeted compounds, food, and health.

Readers will find this book:

Introduces the strict relationship between extensively ordered porous membranes and enhanced productivity;
Explores new approaches based on new membrane pore concepts;
Emphasizes the feasibility and reliability of the proposed techniques within the context of a potential scale-up, analyzing critical issues and traits;
Focuses on the role of porous membranes in some strategic membrane operations, providing clear evidence about the fundamental role of structure-separation properties for the success of membrane processes dedicated to natural resource management.

Audience

Researchers in chemistry, biology, biomedicine, materials science, textiles, and electronics who are involved with membranes and materials; technologists and product managers from industry, including those responsible for research and development, building prototypes and commercial devices, will find this book to be especially valuable.

Contents

Preface xiii

Acknowledgements xvii

Part I: Basic Concepts on Porous Membranes 1

1 Porous Membranes: A Brief Introduction to Basics Concepts and Fields of Applications 3
Annarosa Gugliuzza

1.1 Introduction 4

1.2 Overview on Pore Size Concept and Transport Mechanisms 6

1.2.1 Poiseuille Flow 6

1.2.2 Knudsen Diffusion 7

1.2.3 Selective Surface Diffusion 8

1.2.4 Molecular Sieving 8

1.2.5 Solution-Diffusion Transport 9

1.2.6 Mixed Transport Mechanisms 11

1.2.7 Active and Assisted Transport 12

1.3 Porous Membranes for Membrane Processes 13

1.3.1 Microfiltration Membranes 14

1.3.2 Ultrafiltration Membranes 15

1.3.3 Nanofiltration Membranes 16

1.3.4 Reverse Osmosis Membranes 17

1.3.5 Membrane Contactors Processes 18

1.3.6 Gas Separation and Pervaporation Membranes 19

Conclusions 21

Acknowledgment 21

References 22

2 Approaches to Characterize Pores in Membranes 27
Amalia Gordano

2.1 Introduction to Porous Membranes 27

2.2 Porosity 30

2.3 Methods to Estimate Porosity 34

2.3.1 Methods of Capillary Balance 35

2.3.2 Method of Permeation of Solutes 35

2.3.3 Method of Bubble Pressure 36

2.3.4 Method of Liquid-Liquid Porosimetry 37

2.3.5 Method of Permeability 38

2.3.6 Method of Gas Adsorption/Desorption 38

2.3.7 Method of Mercury Intrusion Porosimetry 39

2.3.8 Method of Thermometry 40

2.3.9 Method of Perporometry 40

2.3.10 Method of Positron Annihilation Duration Spectroscopy 41

2.3.11 Methods of Scatter Radiation 41

2.4 Microscopy Techniques 41

2.5 Conclusions 43

References 44

Part II: Sustainable Fabrication of High-Defined and Dynamic Membrane Pores 47

3 Smart Porous Membranes with Gating Pores for Responsive Separations 49
Zhuang Liu and Liang-Yin Chu

3.1 Introduction 49

3.2 Fabrication Approaches of Smart Membranes with Gating Pores 51

3.2.1 "Grafting From" Method 52

3.2.2 "Grafting To" Method 54

3.2.3 "Blending" Method 55

3.3 Stimuli-Responsive Separations 57

3.3.1 Smart Pores for Size Separations 57

3.3.2 Smart Pores for Affinity Separation 58

3.3.2.1 Hydrophobic Adsorption 58

3.3.2.2 Chiral Resolution 60

3.3.3.3 Removal of Heavy Metal Ions 63

3.4 Summary and Outlook 66

References 67

4 Development of Anion Exchange Membranes via Click Chemistry 73
Binoy Maiti, Alex Abramov and David Díaz Díaz

Abbreviations 73

4.1 Introduction 74

4.2 Poly(2,6-Dimethyl Phenylene Oxide) (PPO)-Based Anion Exchange Membranes 75

4.3 Polysulfone-Based Exchange Membranes 86

4.4 Polystyrene-Based Anion Exchange Membranes 88

4.5 Poly(ionic Liquid)s-Based Anion Exchange Membrane 92

4.6 Conclusion 93

Acknowledgment 93

References 93

5 Supercritical Fluid-Assisted Porous Membrane Formation: Mechanisms and Applications 97
Lucia Baldino and Stefano Cardea

5.1 Introduction 97

5.2 Membranes Morphological Characteristics 98

5.3 Brief Overview on Traditional Membranes Formation Mechanisms and Applications 100

5.4 Supercritical Phase Separation 102

5.5 Main Application Fields of Membranes Produced by Supercritical Phase Separation 105

5.6 Conclusions 107

References 107

6 Advanced Fabrication of Porous Membranes for Membrane Contactors Processes 111
M. Frappa, F. Macedonio, E. Drioli and A. Gugliuzza

Nomenclature 112

Greek symbols 112

Subscript 112

6.1 Introduction 113

6.2 Membrane Contactors Technology: An Overview 114

6.2.1 Membrane Distillation 116

6.2.2 Osmotic Distillation 120

6.2.3 Membrane Crystallization 122

6.2.4 Membrane Emulsification 124

6.2.5 Gas-Liquid Membrane Contactors 126

6.2.6 Membrane Condenser 131

6.3 Membrane Morphology and Wetting Properties Relationships 135

6.3.1 Pore Size and Distribution 135

6.3.2 Surface Contact Angle 137

6.4 Green Materials for More Sustainable Membrane Fabrication 138

6.5 Manufacturing Procedures for Porous Membrane Fabrication 140

6.5.1 Phase Separation 140

6.5.1.1 Non-Solvent Induced Phase Separation (nips) 140

6.5.1.2 Vapor Induced Phase Separation (VIPS) 142

6.5.1.3 Thermally-Induced Phase Separation (TIPS) 144

6.5.2 Phase Separation and Micromolding 145

6.5.3 Water Droplets Self-Assembly 146

6.5.4 Self-Assembly of Block Copolymers 149

6.5.5 Electrospinning 150

6.5.6 Track Etching 152

6.5.7 3D Printed Membranes 153

6.6 Compelling Case Studies for Water Desalination 155

6.7 Conclusions 156

References 157

Part III: Recent Advances in Membrane Separations Based on Porous Materials 173

7 Biotech Porous Membranes 175
Qian Wang and Zhaoliang Cui

7.1 Introduction to MBR 175

7.1.1 What is an MBR? 175

7.1.2 MBR Features 177

7.1.3 Classification of MBR 179

7.2 Membrane Materials for MBR 181

7.2.1 Pvdf 182

7.2.2 Pp 186

7.2.3 Ptfe 188

7.2.4 Ca 191

7.3 Commercial-Scale MBR 192

7.3.1 MBR Commercial Development Process 192

7.3.2 Commercial MBR Technology 194

7.3.2.1 Immersion FS Technology 194

7.3.2.2 Immersion HF Technology 196

7.3.2.3 External MBR Technology 201

7.3.2.4 MABR Technology 202

References 204

8 Porous Imprinted Membranes for Recovering Targeted Compounds and Environmental Remediation 207
Laura Donato

8.1 Introduction 208

8.2 Fundamentals of Molecularly Imprinted Membranes 210

8.3 Separation Mechanisms and Assessment of Selective Properties of MIMs 216

8.4 Application of Porous Molecularly Imprinted Membranes 220

8.4.1 Porous Molecularly Imprinted Membranes in Food Science 220

8.4.1.1 Selective Separation of Bioactive Compounds 221

8.4.1.2 Food Safety 229

8.4.2 Water Remediation 233

8.4.2.1 Removal of Pharmaceuticals 234

8.4.2.2 Removal of Pesticides and Other Recalcitrant Contaminants 240

8.5 Ion Imprinted Membranes and Removal of Ions 247

8.6 Future and Perspectives 258

References 259

9 Few-Layer Materials in Porous Membranes for Advanced Water Desalination 275
M. Frappa, G. Di Luca, E. Drioli and A. Gugliuzza

9.1 Introduction 276

9.2 Environmental Issues: Pollutant Source and Useful Membrane Strategies 278

9.3 Water Desalination: From Traditional to Advanced Membrane Operations 280

9.4 2D Materials for Next Generation Water Desalination 284

9.5 Techniques of Exfoliation 285

9.5.1 Electrochemical Exfoliation 285

9.5.2 Micromechanical Cleavage 286

9.5.3 Ball Milling 286

9.5.4 Ultrasonication 286

9.5.5 Shear Exfoliation 287

9.5.6 Wet Jet Milling 287

9.6 Few-Layers 2D Materials-Based Membranes and Water Treatment 287

9.7 A Focus on Graphene-Based Membranes for Water Desalination 290

9.7.1 Defective Graphene Confined in Polymeric Porous Membranes 290

9.7.2 Graphene Membranes to Membrane Distillation Processes 293

9.8 Few-Layered Graphene Nanochannels Like Ion Filtering 297

9.9 Chalcogenides in Porous Confined Membranes for Water Desalination 299

9.10 Water Desalination and Few-Layer Materials Within the Circular Economy Framework 302

Acknowledgments 304

References 304

10 Sub-Nanometer Channels in Two-Dimensional-Material Membranes for Gas Separation 313
Song Liu, Long Cheng, Gongping Liu and Wanqin Jin

10.1 Introduction 314

10.2 Three Main Types of Membrane Structures 315

10.2.1 Porous Monolayer Graphene Membrane 315

10.2.2 Laminar Membranes 317

10.2.3 Nanosheet-Based Mixed-Matrix Membranes 320

10.3 Other Two-Dimensional Material Membranes 322

10.4 Applications for Gas Separation 325

10.4.1 Hydrogen Purification 325

10.4.2 Co2 Capture 327

10.4.3 More Challenging Gas Mixtures 329

10.5 Conclusions and Perspectives 331

References 333

Index 337

最近チェックした商品