Medical Analytics for Clinical and Healthcare Applications (Machine Learning in Biomedical Science and Healthcare Informatics)

個数:
電子版価格
¥24,800
  • 電子版あり

Medical Analytics for Clinical and Healthcare Applications (Machine Learning in Biomedical Science and Healthcare Informatics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 352 p.
  • 言語 ENG
  • 商品コード 9781394301454

Full Description

The book is essential for anyone exploring the forefront of healthcare innovation, as it offers a thorough exploration of transformative data-driven methodologies that can significantly enhance patient outcomes and clinical efficiency in today's evolving medical landscape.

In today's rapidly advancing healthcare landscape, the integration of medical analytics has become essential for improving patient outcomes, clinical efficiency, and decision-making. Medical Analytics for Clinical and Healthcare Applications provides a comprehensive examination of how data-driven methodologies are revolutionizing the medical field. This book offers a deep dive into innovative techniques, real-world applications, and emerging trends in medical analytics, showcasing how these advancements are transforming disease detection, diagnosis, treatment planning, and healthcare management.

Spanning sixteen chapters across five subsections, this edited volume covers a wide array of topics—from foundational principles of medical data analysis to cutting-edge applications in predictive healthcare and medical data security. Readers will encounter state-of-the-art methodologies, including machine learning models, predictive analytics, and deep learning techniques applied to various healthcare challenges such as mental health disorders, cancer detection, and hospital mortality predictions. Medical Analytics for Clinical and Healthcare Applications equips readers with the knowledge to harness the power of medical analytics and its potential to shape the future of healthcare. Through its interdisciplinary approach and expert insights, this volume is poised to serve as a valuable resource for advancing healthcare technologies and improving the overall quality of care.

Readers will find the volume:

Explores the latest medical analytics techniques applied across clinical settings, from diagnosis to treatment optimization;
Features real-world case studies and tools for implementing data-driven solutions in healthcare;
Bridges the gap between healthcare professionals, data scientists, and engineers for collaborative innovation in medical technologies;
Provides foresight into emerging trends and technologies shaping the future of healthcare analytics.

Audience

Healthcare professionals, clinical researchers, medical data scientists, biomedical engineers, IT professionals, academics, and policymakers focused on the intersection of medicine and data analytics.

Contents

Preface xv

Part 1: Foundations of Medical Analytics 1

1 Exploring Trends in Depression and Anxiety Using Machine and Deep Learning Models 3
Garvit Jakar, Timothy George, Parvathi R., Pattabiraman V. and Xiaohui Yuan

1.1 Introduction 4

1.2 Exploratory Data Analysis 6

1.3 Problem Statement and Motivation 7

1.4 Literature Survey 8

1.5 Data Visualization 9

1.6 Overview of Dataset 10

1.7 Methodology 13

1.8 Modules 15

1.9 Results and Discussion 26

1.10 Conclusion 28

Part 2: Disease Detection and Diagnosis 31

2 An Innovative Framework for the Detection and Classification of Breast Cancer Disease Using Logistic Regression Compared with Back Propagation Neural Network 33
K. Reema Sekhar and Ashley Thomas

2.1 Introduction 34

2.2 Materials and Methods 36

2.3 Results 39

2.4 Discussion 42

2.5 Conclusion 45

3 An Approach to Conduct the Diabetes Prediction Using AdaBoost Algorithm Compared with Decision Tree Classifier Algorithm 49
P. Jaswanth Reddy and R. Thalapathi Rajasekaran

3.1 Introduction 50

3.2 Materials and Methods 53

3.3 Results and Discussion 55

3.4 Conclusion 61

4 Efficient Net V2-Based Pneumonia Detection: A Comparative Study with Transfer Learning Models 65
Suguna M., Shane V. Jose, Om Kumar C.U., Gunasekaran T. and Prakash D.

4.1 Introduction 66

4.2 Related Works 67

4.3 Materials and Methods 71

4.4 Results and Discussion 79

4.5 Conclusion and Future Work 90

5 A Histogram Equalized Median Filtered SIFT-EfficientNet Based on Deep Learning Approach for Lung Disease Detection 93
Suguna M., Pujala Shree Lekha, Om Kumar C.U., Arunmozhi M. and Prakash D.

5.1 Introduction 94

5.2 Related Works 96

5.3 Materials and Methods 98

5.4 Performance Measure 112

5.5 Results and Discussion 113

5.6 Conclusion and Future Work 119

Part 3: Predictive Analytics in Healthcare 125

6 Comparing the Efficiency of ResNet-50 and Convolutional Neural Networks for Facial Mask Detection 127
Shaik Khaleel Basha and K. Nattar Kannan

6.1 Introduction 128

6.2 Materials and Methods 131

6.3 ResNet-50 Architecture 132

6.4 Convolutional Neural Networks (CNN) 133

6.5 Statistical Analysis 134

6.6 Results and Discussion 135

6.7 Conclusion 142

7 Enhancing Accuracy in Predicting Knee Osteoarthritis Progression Using Kellgren-Lawrence Grade Compared with Deep Convolutional Neural Network 145
Sai Srinivasa and Malarkodi K.

7.1 Introduction 146

7.2 Materials and Methods 149

7.3 Results and Discussion 153

7.4 Conclusion 158

8 A Comparative Analysis of Support Vector Machine over K-Neighbors Classifier for Predicting Hospital Mortality with Improved Accuracy 161
Prabhu Kumar Adi and C. Anitha

8.1 Introduction 162

8.2 Materials and Methods 166

8.3 Results and Discussion 170

8.4 Conclusion 175

9 Asthma Prediction Using Vowel Inspiration: A Machine Learning Approach 179
Sandhya Prasad, Anik Bhaumik, Suvidha Rupesh Kumar, Rama Parvathy L., Heshalini Rajagopal and Janani S.

9.1 Introduction 180

9.2 Literature Survey 182

9.3 Motivation and Background 185

9.4 Proposed Method 186

9.5 Discussion 194

9.6 Results 200

9.7 Conclusion 202

Part 4: Medical Data Analysis and Security 207

10 Improvement of Accuracy in Prevention of Medical Images from Security Threats Using Novel Lasso Regression in Comparison with K-Means Classifier 209
K. Raghul and M. Kalaiyarasi

10.1 Introduction 210

10.2 Materials and Methods 213

10.3 Result 216

10.4 Discussion 220

10.5 Conclusion 221

11 Renal Cancer Detection from Histopathological Images Using Deep Learning 225
Akhil Kumar, R. Krithiga, S. Suseela, B. Swarna and T. Karthikeyan

11.1 Introduction 226

11.2 Materials and Methods 229

11.3 Results and Discussions 237

11.4 Conclusion and Future Work 240

12 A Novel Method to Predicting Tumor in Fallopian Tube Using
DenseNet Over Linear Regression with Enhanced Efficiency 243

Harish C.M. and Terrance Frederick Fernandez

12.1 Introduction 244

12.2 Materials and Methods 246

12.3 Results and Discussion 250

12.4 Conclusion 257

13 Protected Medical Images Against Security Threats Using Lasso Regression and K-Means Algorithms 261
N. Sainath Reddy and S. Tamilselvan

13.1 Introduction 261

13.2 Materials and Methods 262

13.3 K-Means Classifier 263

13.4 Procedure for K-Means Classifier 263

13.5 Lasso Regression 263

13.6 Procedure for Lasso Regression 264

13.7 Statistical Analysis 264

13.8 Results 264

13.9 Discussion 266

13.10 Conclusion 267

Part 5: Emerging Trends and Technologies 271

14 Predicting the Factors Influencing Alcoholic Consumption of Teenagers Using an Optimized Random Forest Classifier in Comparison with Logistic Regression 273
Devineni Giri and M. Gunasekaran

14.1 Introduction 273

14.2 Materials and Methods 275

14.3 Random Forest Classifier 275

14.4 Algorithm for Random Forest Classifier 276

14.5 Logistic Regression Classifier 276

14.6 Algorithm for Logistic Regression Classifier 276

14.7 Results 277

14.8 Discussion 279

14.9 Conclusion 280

15 Harnessing Food Waste Potential: Advancing Protein Sequence Motif Analysis with Novel Cluster Sequence Analyzer Machine Learning Model 283
U. Vignesh, Geetha S. and Benson Edwin Raj

15.1 Introduction 284

15.2 Suffix Tree 289

15.3 Clustering Algorithms in PPI 293

15.4 Classification Agorithms in PPI 296

15.5 CSA and PPI Interaction Results 298

15.6 Conclusion 308

16 "Hi-Tech People, Digitized HR— Are We Missing the Humane Link?"—Use of People Analytics as an Effective HRM Tool in a Selected Healthcare Sector 311
Rana Bandyopadhyay and Aniruddha Banerjee

16.1 Introduction 312

16.2 Research Background 313

16.3 Literature Review 313

16.4 Research Gaps 315

16.5 Research Methodology 315

16.6 Objectives 315

16.7 NH Success Story 315

16.8 Analysis and Discussion 316

16.9 Findings 321

16.10 People Analytics and Humane Touch 325

16.11 Conclusions 327

References 327
Index 329

最近チェックした商品