Data-Driven Energy Management and Tariff Optimization in Power Systems : Shaping the Future of Electricity Distribution through Analytics

個数:
電子版価格
¥21,442
  • 電子版あり

Data-Driven Energy Management and Tariff Optimization in Power Systems : Shaping the Future of Electricity Distribution through Analytics

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 288 p.
  • 言語 ENG
  • 商品コード 9781394290277

Full Description

Presents a comprehensive guide to transforming power systems through data

Data-Driven Energy Management and Tariff Optimization in Power Systems offers an authoritative examination of how data science is reshaping the energy landscape. As the electricity sector grapples with increasing complexity, this timely volume responds to a growing demand for adaptive strategies that enable accurate forecasting, intelligent tariff design, and optimized resource allocation, underpinned by advanced analytics and machine learning.

Drawing on global expertise and real-world case studies, the book bridges the theoretical and practical dimensions of energy systems management, providing deep insight into how data collected from smart meters, SCADA systems, and IoT devices can be mined for predictive modeling, demand response, and peak load management. The book's accessible structure and didactic approach make it suitable for a wide readership, while its breadth of topics ensures relevance across the spectrum of energy challenges.

Integrating rigorous analysis with application-oriented strategies, this book:

Presents advanced techniques in machine learning, predictive modeling, and pattern recognition tailored to energy management and tariff design
Provides accessible explanations of complex algorithms through a didactic and visual teaching style, including informative tables and illustrations
Highlights tools for grid stability, demand forecasting, and peak load management using high-resolution energy data
Addresses the integration of renewable energy sources into existing infrastructures through data-driven optimization

Designed for a broad audience, Data-Driven Energy Management and Tariff Optimization in Power Systems is ideal for upper-level undergraduate and graduate courses in energy management, power systems analytics, and smart grids as part of electrical engineering or energy policy programs. It is also an essential reference for power system engineers, energy analysts, researchers, and policymakers involved in grid planning and optimization.

Contents

About the Editors xiii

List of Contributors xv

Preface xix

1 Fundamentals of Power System Data and Analytics 1
Pouya Ramezanzadeh, Mohsen Parsa Moghaddam, and Reza Zamani

1.1 Introduction 1

1.2 Background 2

1.2.1 Concept, Opportunities, and Challenges of Present and Future Power Systems 2

1.2.2 Transformation in the Power Industry 3

1.2.3 Drivers and Barriers 6

1.3 Data-rich Power Systems 6

1.3.1 Data Sources and Types 8

1.3.2 Data Structure 10

1.4 Data Analytics in Power Systems 11

1.4.1 What Is Data Analytics? 12

1.4.2 Analytics Techniques 12

1.5 Data Analytics-Based Decision-Making in Future Power Systems 13

1.5.1 Decision Framework 15

1.5.1.1 Uncertainty Issues 15

1.5.1.2 Behavioral Analytics 15

1.5.1.3 Policy Mechanisms 15

1.5.2 Computational Aspects 16

1.6 Conclusion 16

1.7 Future Trends and Challenges 16

References 17

2 Advanced Predictive Modeling for Energy Consumption and Demand 21
Seyed Mohsen Hashemi and Abbas Marini

2.1 The Role of Load Forecasting in Power System Planning 21

2.2 Need for Short-Term Demand Forecasting 22

2.3 Components of Power Demand and Factors Affecting Demand Growth 22

2.3.1 Electricity Demand from the Consumer Type Perspective 23

2.3.2 Electricity Demand from the Supply Perspective 23

2.4 Electricity Demand in Networks with High Renewable Energy Sources 24

2.5 Machine Learning and Its Applications in Demand Forecast 25

2.5.1 Application of Clustering in Load Forecasting 27

2.6 The Impact of Macro-decisions on Long-term Load Forecasting 28

2.6.1 Natural Gas as a Primary Energy Carrier for Heating Demand 29

2.7 Conclusion 34

References 35

3 Demand Response and Customer-Centric Energy Management 39
Alireza Mansoori, Mohsen Parsa Moghaddam, and Reza Zamani

3.1 Introduction 39

3.2 Background 39

3.3 Future Power Systems Aspects, Trends, and Challenges 41

3.4 Transforming to Customer-Centric Era 41

3.4.1 Differences Between Customer-Centric DR Solution and OtherWays in the Future

Power System 42

3.4.2 Drivers and Enablers 42

3.5 Customer-Centric Power System Structure 45

3.5.1 Physical Layer 45

3.5.1.1 Physical Resources 45

3.5.1.2 Physical Constraints of the System 46

3.5.2 Cyber-Social Layers 49

3.5.2.1 Centralized Approach (Traditional) 50

3.5.2.2 Decentralized Approach (Future) 50

3.6 Conclusion and Future Trends 54

References 57

4 Applications of Data Mining in Industrial Tariff Design and Energy Management: Concepts and Practical Insights 61
Hamidreza Arasteh, Niki Moslemi, Majid Miri Larimi, Pierluigi Siano, Sobhan Naderian, andJosep M. Guerrero

4.1 Introduction 61

4.1.1 Data Mining: Concepts, Procedures, and Tools 61

4.1.2 Energy Management and the Role of Data Mining 65

4.1.3 Aims and Scope 66

4.2 Investigating Industrial Load Data: Analysis Through Various Indexes 67

4.3 Classification of Industries 86

4.4 Discussion and Conclusions 90

References 92

5 Data-Driven Tariff Design for Equitable Energy Distribution 95
Salah Bahramara, Hamidreza Arasteh, Asrin Seyedzahedi, and Khabat Ghamari

5.1 Introduction 95

5.1.1 Literature Review and Contributions 96

5.1.2 Chapter Organization 97

5.2 Proposed Approach and Formulations 97

5.3 Describing the Case Study 98

5.4 Simulation Results 100

5.5 Conclusions and Future Works 100

References 105

6 Applying Artificial Intelligence to Improve the Penetration of Renewable Energy in Power Systems 107
Abbas Marini and Seyed Mohsen Hashemi

6.1 Introduction 107

6.2 Machine Learning Techniques 109

6.2.1 Artificial Neural Network and Deep Neural Network 110

6.2.2 Convolutional Neural Network 111

6.2.3 Recurrent Neural Network 111

6.2.4 Long Short-Term Memory 112

6.3 General View of ML/DL Methods for RES Integration 112

6.3.1 Data Preprocessing 114

6.3.1.1 Normalization 115

6.3.1.2 Wrong/Missing Values and Outliers 115

6.3.1.3 Data Resolution 115

6.3.1.4 Inactive Time Data 116

6.3.1.5 Data Augmentation 116

6.3.1.6 Correlation 116

6.3.1.7 Data Clustering 116

6.3.2 Deterministic/Probabilistic Forecasting Methods 116

6.3.2.1 Deterministic Methods 116

6.3.2.2 Probabilistic Forecasting Methods 119

6.3.3 Evaluation Measures 119

6.4 ML/DL Application for Integration of RES 121

6.4.1 Renewable Resources Data Prediction/Planning 122

6.4.2 RES Power Generation Prediction/Operation 125

6.4.3 Electric Load and Demand Forecasting 126

6.4.4 Stability Analysis 127

6.4.4.1 Security Assessment 128

6.4.4.2 Stability Assessment 129

6.5 Integrated Machine Learning and Optimization Approach 129

6.6 Conclusion 131

References 132

7 Machine Learning-Based Solutions for Renewable Energy Integration: Applications, Optimization, and Grid Stability 135
Ali Paeizi, Mohammad Mehdi Amiri, Sasan Azad, and Mohammad Taghi Ameli

7.1 Introduction 135

7.2 Machine Learning Importance in RESs Sector 137

7.2.1 AI-Based Algorithms in RESs 137

7.2.2 ML Algorithms Application in RESs 140

7.3 Role of ML in Optimizing Renewable Energy Generation 150

7.3.1 Different Programming Models in RES Optimization 150

7.3.2 Optimization Objectives in RESs 150

7.3.3 ML Applications in Optimizing Renewable Energy Generation 151

7.4 Ensuring Grid Stability Through ML-Based Forecasting 155

7.4.1 Grid Stability Forecasting 155

7.4.2 Grid Stability Through ML-Based Forecasting 157

7.5 Challenges and Future Direction in ML-Based Approaches to RESs 159

7.5.1 Challenges in ML-Based Approaches to RESs 160

7.5.2 Future Directions in ML-Based Approaches to RESs 161

7.6 Conclusion 162

References 163

8 Application of Artificial Neural Networks in Solar Photovoltaic Power Forecasting 167
Hamid Jabari, Afshin Ebrahimi, Ardalan Shafiei-Ghazani, and Farkhondeh Jabari

8.1 RES Share inWorld Energy Transition 167

8.2 Applications of PV Panels in Energy Systems 168

8.3 Disadvantages of PV Panels 169

8.4 Importance of PV Power Forecasting 170

8.5 Proposed Algorithm for PV Power Prediction 170

8.6 Numerical Results and Discussions 172

8.7 Concluding Remarks 172

References 175

9 Power System Resilience Evaluation: Data Challenges and Solutions 179
Mohammad Reza Sheibani, Habibollah Raoufi, and Javad Nezafat Namini

9.1 Introduction 179

9.2 A Review of Power System Resilience Metrics 180

9.3 The General Framework for the Resilience Assessment of the Power System 182

9.4 Data Required for Power System Resilience Studies 182

9.4.1 Data of Natural Origin 184

9.4.2 Basic Data of the Power System 184

9.4.3 Data on Failure and Restoration Rates 186

9.5 Data Analysis and Correction 187

9.6 Disaster Forecasting in Power System Resilience Studies 188

9.7 Modeling the Impact of Disaster on Power System Performance 189

9.8 Static Model in Machine Learning 190

9.9 Spatiotemporal Random Process 192

9.9.1 Dynamic Model for Chain Failures 192

9.9.2 Nonstationary Failure-Recovery-Impact Processes 192

9.10 Lessons Learned and Concluding Remarks 193

9.11 Future Work 194

References 194

10 Nonintrusive Load Monitoring in Smart Grids Using Deep Learning Approach 197
Sobhan Naderian and Hamidreza Arasteh

10.1 Introduction 197

10.2 Deep Learning Neural Networks 199

10.2.1 RNN 199

10.2.2 LSTM 199

10.2.3 CNN 200

10.2.4 Convolutional Layer 201

10.2.5 Pooling Layer 201

10.2.6 Fully Connected Layer 201

10.3 The Proposed Method 201

10.3.1 Pre-Processing and Preparing Data 201

10.3.2 Proposed Method Architecture 202

10.3.3 Proposed Method's Parameters 202

10.3.4 Performance Evaluation 203

10.4 Results and Discussion 204

10.5 Challenges and Future Trends 206

10.6 Conclusion 206

References 207

11 Power System Cyber-Physical Security and Resiliency Based on Data-Driven Methods 211
Hamed Delkhosh, Mahdi Ghaedi, and Maryam Azimi

11.1 Introduction 211

11.2 Fundamental Concepts 212

11.2.1 Cyber-Physical Power System (CPPS) 212

11.2.2 Security and Resiliency 214

11.3 Role of Data Analytics 215

11.3.1 Basic Methods 215

11.3.1.1 Supervised Learning (SL) 215

11.3.1.2 Unsupervised Learning (UL) 216

11.3.2 Advanced Techniques 216

11.3.2.1 Dimensionality Reduction (DR) 217

11.3.2.2 Feature Engineering 217

11.3.2.3 Reinforcement Learning 217

11.3.2.4 Integrated Models 218

11.4 Interdependency Modeling 218

11.4.1 Direct Modeling 220

11.4.2 Testbeds 220

11.4.3 Game-Theoretic 221

11.4.4 Machine Learning 222

11.5 Cyber-Physical Threats 223

11.5.1 Physical Attacks 224

11.5.2 Cyberattacks 225

11.5.2.1 Confidentiality 225

11.5.2.2 Availability 226

11.5.2.3 Integrity 226

11.5.3 Coordinated Attacks 227

11.6 Defense Framework 228

11.6.1 Preventive Measures 228

11.6.1.1 Supply Chain Security 229

11.6.1.2 Access Control 229

11.6.1.3 Personnel Training 230

11.6.1.4 Resource Allocation 230

11.6.1.5 Infrastructure Hardening 231

11.6.1.6 Moving Target Defense 231

11.6.2 Mitigation Actions 232

11.6.2.1 Attack Detection 232

11.6.2.2 Data Recovery 233

11.6.2.3 Reconfiguration and Restoration 233

11.6.2.4 Forensic Analysis 234

11.7 Conclusion 234

References 235

12 Application of Artificial Intelligence in Undervoltage Load Shedding in Digitalized Power Systems: An In-Depth Review 239
Nazanin Pourmoradi, Sasan Azad, Mohammad Mehdi Amiri, and Miadreza Shafie-khah

12.1 Introduction 239

12.2 Load-Shedding Strategies 240

12.2.1 Conventional LS 240

12.2.2 Adaptive LS 240

12.2.3 AI-Based LS 241

12.3 Principles of UVLS 242

12.3.1 Amount of Load Shed 242

12.3.2 Location for LS 243

12.3.3 Application of VSI for UVLS 243

12.4 AI-Based Methods 244

12.5 Case Study 248

12.5.1 Database Generation 248

12.5.2 Offline Training 248

12.5.3 Online Application 249

12.6 Future Challenges and Transfer Learning 249

12.7 Conclusion 251

References 252

Index 257

最近チェックした商品