Machine Learning for Business Analytics : Concepts, Techniques and Applications in Python (2ND)

個数:
電子版価格
¥17,361
  • 電子版あり

Machine Learning for Business Analytics : Concepts, Techniques and Applications in Python (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 720 p.
  • 言語 ENG
  • 商品コード 9781394286799

Full Description

Machine Learning for Business Analytics: Concepts, Techniques, and Applications in Python is a comprehensive introduction to and an overview of the methods that underlie modern AI. This best-selling textbook covers both statistical and machine learning (AI) algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation, network analytics and generative AI. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques.

This is the second Python edition of Machine Learning for Business Analytics. This edition also includes:

A new chapter on generative AI (large language models or LLMs, and image generation)
An expanded chapter on deep learning
A new chapter on experimental feedback techniques including A/B testing, uplift modeling, and reinforcement learning
A new chapter on responsible data science
Updates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their students
A full chapter of cases demonstrating applications for the machine learning techniques
End-of-chapter exercises with data
A companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutions

This textbook is an ideal resource for upper-level undergraduate and graduate level courses in AI, data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology.

最近チェックした商品