Applied Computer Vision through Artificial Intelligence

個数:
電子版価格
¥30,153
  • 電子版あり

Applied Computer Vision through Artificial Intelligence

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 512 p.
  • 言語 ENG
  • 商品コード 9781394272594

Full Description

Master the cutting-edge field of computer vision and artificial intelligence with this accessible guide to the applications of machine learning and deep learning for real-world solutions in robotics, healthcare, and autonomous systems.

Applied Computer Vision through Artificial Intelligence provides a thorough and accessible exploration of how machine learning and deep learning are driving breakthroughs in computer vision. This book brings together contributions from leading experts to present state-of-the-art techniques, tools, and frameworks, while demonstrating this technology's applications in healthcare, autonomous systems, surveillance, robotics, and other real-world domains. By blending theory with hands-on insights, this volume equips readers with the knowledge needed to understand, design, and implement AI-powered vision solutions.

Structured to serve both academic and professional audiences, the book not only covers cutting-edge algorithms and methodologies but also addresses pressing challenges, ethical considerations, and future research directions. It serves as a comprehensive reference for researchers, engineers, practitioners, and graduate students, making it an indispensable resource for anyone looking to apply artificial intelligence to solve complex computer vision problems in today's data-driven world.

Contents

Preface xxi

1 An Overview of Medical Diagnostics through Artificial Intelligence-Powered Histopathological Imaging and Video Analysis 1
Atul Rathore, Praveen Lalwani, Pooja Lalwani and Rabia Musheer

1.1 Introduction 2
1.2 Background 11
1.3 Preliminaries 14
1.4 Experimental Results 24
1.5 Conclusion 30

2 Generative Adversarial Networks: Theory and Application in Synthesis 39
Manoj Kumar Pandey, Priyanka Gupta, Triveni Lal Pal and Ayush Kumar Agrawal

2.1 Introduction 40
2.2 Ideologies of GAN 45
2.3 Architecture of GAN 47
2.4 Applications of GAN 49
2.5 Conclusion 55

3 From Pixels to Predictions: Deep Learning for Glaucoma Detection 59
Tushar Verma, Sachin Ahuja and Jasminder Kaur Sandhu

3.1 Introduction 60
3.2 Literature Review 67
3.3 Problem Statement 74
3.4 Hybrid Approach for Glaucoma Detection 75
3.5 Result and Discussion 78
3.6 Conclusion 84
3.7 Future Scope 84

4 Advancements in Computer Vision for Object Detection and Recognition using DenseNet Deep Learning Model 89
N. Deepa, Padmapriya L., Priyadarshini V. and Shree Harini S.

4.1 Introduction 89
4.2 Literature Survey 90
4.3 Proposed System 91
4.4 Results and Discussion 93
4.5 Conclusion 96

5 Deep Learning-Based Detection of Cyber Extortion 99
Mohana Preya R., Ramya M. and A. Abdhur Rahman

5.1 Introduction 100
5.2 Related Works 101
5.3 Existing System 105
5.4 Proposed System 106
5.5 System Architecture 107
5.6 Methodology 107
5.7 Results and Discussion 112
5.8 Conclusion 114
5.9 Future Work 114

6 GANs Unleashed: From Theory to Synthetic Realities 117
Rakhi Chauhan, Priya Batta and Km Meenakshi

6.1 Introduction 117
6.2 Related Works 122
6.3 Limitations that are Enforced by GAN 129
6.4 Conclusion 130

7 RFID and Computer Vision-Enhanced Automotive Authentication Verification System 133
V. Vidya Lakshmi, Sowmya M. B., Archanaa R., Shreenidhi G. and Naveena R.

7.1 Introduction 134
7.2 Literature Survey 136
7.3 Proposed System 137
7.4 Working 139
7.5 Block Diagram 141
7.6 Hardware Components 142
7.7 Result 151
7.8 Conclusion 153

8 Synergizing Ensemble Learning Techniques for Robust Emotion Detection using EEG Signals 157
Pulkit Dwivedi, Jasminder Kaur Sandhu and Rakesh Sahu

8.1 Introduction 158
8.2 Ensemble Learning Techniques 160
8.3 Methodology 176
8.4 Experimental Results 178
8.5 Discussion 183
8.6 Conclusion 185

9 Understanding the Unseen: Explainability in Deep Learning for Computer Vision 187
Apoorva Jain, Jasminder Kaur Sandhu and Pulkit Dwivedi

9.1 Introduction 188
9.2 The Need for Interpretation in Computer Vision 190
9.3 Understanding Interpretability in Deep Learning 192
9.4 Visualization Techniques 195
9.5 Maps of the Headland 200
9.6 Model Simplification 203
9.7 Meaning of Function 204
9.8 Feature Importance 206
9.9 Methods Based on Prototypes 208
9.10 Challenges and Future Directions 208
9.11 Conclusion 210
9.12 Future Vision 211

10 Prefatory Study on Landslide Susceptibility Modeling Based on Binary Random Forest Classifier 213
Arpitha G. A. and Choodarathnakara A. L.

10.1 Introduction 214
10.2 Materials and Methodology 215
10.3 Result Analysis 221
10.4 Conclusion 224

11 Improving Digital Interactions using Augmented Reality and Computer Vision 229
Priya Batta and Rakhi Chauhan

11.1 Introduction 229
11.2 Literature Survey 234
11.3 Methodology 237
11.4 Results 239
11.5 Conclusion and Future Scope 240

12 The Evolutionary Dynamics of Machine Learning and Deep Learning Architectures in Computer Vision 243
Palvadi Srinivas Kumar

12.1 Introduction to Computer Vision and Its Evolution 244
12.2 Foundations of Machine Learning in Computer Vision 245
12.3 Rise of Deep Learning in Computer Vision 246
12.4 Key Architectures and Techniques in Deep Learning for Computer Vision 248
12.5 CNN Architectures 249
12.6 Transfer Learning and Fine-Tuning 249
12.7 Object Detection, Image Segmentation, and Image Classification 250
12.8 Evolution of Image Processing Models 251
12.9 Challenges and Future Directions 256
12.10 Applications and Impacts 261
12.11 Conclusion 265

13 Real-World Applications: Transforming Industries with Computer Vision 269
Seema B. Rathod, Pallavi H. Dhole and Sivaram Ponnusamy

13.1 Introduction 270
13.2 Healthcare 273
13.3 Manufacturing 277
13.4 Retail 281
13.5 Automotive 286
13.6 Agriculture 289
13.7 Security and Surveillance 292
13.8 Challenges and Future Directions 295
13.9 Future Trends 296
13.10 Conclusion 296

14 Revolutionizing Vision Perception with Multimodal Fusion Technologies 299
Priya Batta, Rakhi Chauhan and Gagandeep Kaur

14.1 Introduction 300
14.2 Literature Survey 302
14.3 Methodology 304
14.4 Results and Discussions 306
14.5 Conclusion and Future Scope 308

15 Object Detection and Localization: Identifying and Pinpointing With Precision 311
Seema B. Rathod, Pallavi H. Dhole and Sivaram Ponnusamy

15.1 Introduction 312
15.2 Background and Literature Review 315
15.3 Methodologies and Techniques 316
15.4 Evaluation Metrics and Benchmarks 320
15.5 Applications and Case Studies 323
15.6 Challenges and Future Directions 326
15.7 Conclusion 328

16 Uncertainty Estimation in Deep Learning Based Computer Vision 331
Palvadi Srinivas Kumar

16.1 Introduction 332
16.2 Basics of Uncertainty 333
16.3 Uncertainty Estimation Techniques 334
16.4 Uncertainty in Object Detection 337
16.5 Challenges and Considerations in Detecting Objects with Uncertain Predictions 338
16.6 Case Studies and Practical Examples 338
16.7 Uncertainty in Semantic Segmentation 339
16.8 Pixel-Wise Uncertainty Estimation Techniques 340
16.9 Incorporating Uncertainty Into Segmentation Models for Improved Performance 340
16.10 Practical Implications and Case Studies 340
16.11 Uncertainty in Image Classification 341
16.12 Applications and Case Studies 341
16.13 Evaluating Uncertainty Estimates 342
16.14 Future Directions and Challenges 342
16.15 Conclusion 346

17 Overcoming Occlusions in Visual Data using Long Short-Term Memory Networks (LSTMs) 349
Sivaram Ponnusamy, K. Swaminathan, Nandha Gopal S. M., Ambika Jaiswal and Suhashini Chaurasia

17.1 Introduction 350
17.2 Literature Survey 352
17.3 Proposed System 353
17.4 Results and Discussion 357
17.5 Conclusion 360

18 Transformative Role of Machine Learning and Deep Learning Architecture in Computer Vision 363
Neetu Amlani, Swapnil Deshpande, Suhashini Chaurasia, Ambika Jaiswal and Sivaram Ponnusamy

18.1 Introduction 364
18.2 Literature Review 365
18.3 Methodology 368
18.4 Conclusion 374

19 A Comprehensive Analysis of Deep Learning and Machine Learning for Semantic Segmentation, and Object Detection in Machine and Robotic Vision 377
Pragati V. Thawani, Prafulla E. Ajmre, Suhashini Chaurasia and Sivaram Ponnusamy

19.1 Introduction 378
19.2 Machine Learning/Deep Learning Algorithms 378
19.3 Object Detection, Semantic Segmentation, and Human Action Recognition Methods 382
19.4 Human and Computer Vision Systems 386
19.5 Case Studies 388
19.6 Challenges 389
19.7 Conclusion 389

20 From Theoretical Foundations to Data Synthesis: Advanced Applications of Generative Adversarial Networks (GANs) 393
Pulkit Dwivedi, Jasminder Kaur Sandhu and Apoorva Jain

20.1 Introduction 393
20.2 Theoretical Foundations of Gans 395
20.3 Applications of GANs in Synthesis 399
20.4 Case Studies and Practical Implementations 403
20.5 Implementation of GANs for Synthetic Image Generation 404
20.6 Transfer Learning in GANs 409
20.7 Advanced Training Techniques for GANs 413
20.8 Security Implications of GANs 418
20.9 GANs for Sustainable AI Development 423
20.10 Challenges and Future Directions 42720.11 Conclusion 430

21 Optimization Techniques in Training Deep Neural Networks for Vision 433
Shantanu Bindewari, Sumit Singh Dhanda and Anand Singh

21.1 Introduction to Deep Neural Networks for Vision 434
21.2 Fundamentals of Optimization in Neural Networks 436
21.3 Advanced Gradient-Based Optimization Techniques 438
21.4 Regularization Techniques for Vision Models 443
21.5 Learning Rate Schedules and Optimizers for Efficient Training 447
21.6 Techniques for Handling Vanishing and Exploding Gradients 448
21.7 Model Compression and Optimization for Inference 450
21.8 Transfer Learning and Fine-Tuning Techniques 451
21.9 Hyperparameter Tuning and Optimization Techniques 452
21.10 Case Studies and Applications 453

Architectures 454
References 455
About the Editors 459
Index 461

最近チェックした商品