Solid-State Materials in Pharmaceutical Chemistry : Properties, Characterization, and Applications (2ND)

個数:
電子版価格
¥25,799
  • 電子版あり

Solid-State Materials in Pharmaceutical Chemistry : Properties, Characterization, and Applications (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 560 p.
  • 言語 ENG
  • 商品コード 9781394254446

Full Description

Updated and expanded information on the properties of pharmaceutical solids and their impact on drug product performance, quality, and stability

Solid-State Materials in Pharmaceutical Chemistry provides readers with a comprehensive and up-to-date resource for understanding and controlling the solid-state properties of pharmaceutical materials, enabling the development of safe and effective medicines including small molecule compounds, peptides, proteins, and nucleotides. This new edition covers the significant transformations in the landscape of pharmaceutical research, development, and manufacturing since the previous edition was published, presenting both novel challenges and unprecedented opportunities.

New chapters in this edition cover physical and chemical properties of RNA therapeutics, a frontier to many life-saving medicines and vaccines including Covid vaccines, and final stage drug substance manufacturing and control, addressing challenges in API process development including impurity purging, chiral separation, final form preparation, particle size reduction, and nitrosamine control. Readers will also find other updated topics including bulk and surface properties of solids, lipid nanoparticles, applications of pharmaceutical solvates in impurity purging and final form preparation, pharmaceutical cocrystal engineering to enable chiral separation, the emerging technique of microcrystal electron diffraction in solid form characterization, poor wettability of APIs, oral delivery of peptides such as semaglutide, injectable drug-device combination products, and N-nitrosamine control in drug product.

This updated and revised Second Edition still features:

Physical and chemical properties of solid-state pharmaceuticals such as amorphous forms, mesophases, polymorphs, hydrates/solvates, salts, co-crystals, nano-particles, and solid dispersions
Characterization techniques for solid form identification and physical attribute analysis such as X-Ray powder diffraction, thermal analysis, microscopy, spectroscopy, solid state NMR, particle analysis, water sorption, mechanical property testing, solubility, and dissolution
Applications of pharmaceutical chemistry and physical characterization techniques in developing and testing drug substances and drug products for small molecules and biopharmaceuticals

This book is an essential resource on the subject for formulation scientists, process chemists, medicinal chemists, and analytical chemists. The book will also appeal to quality control, quality assurance, and regulatory affair specialists and advanced undergraduate and graduate students in pharmaceutical chemistry, drug delivery, material science, crystal engineering, pharmaceutics, and biopharmaceutics.

Contents

Biography of Authors xv

Preface xvii

Preface to the First Edition xvii

Acknowledgment xix

1 Solid-State Properties and Pharmaceutical Development 1

1.1 Introduction 1

1.2 Solid-state Forms 1

1.3 Bulk and Surface Properties of Solids 6

1.4 ICH Q6A Decision Trees 7

1.5 "Big Questions" for Drug Development 8

1.6 Accelerating Drug Development 10

1.7 Solid-state Chemistry in Preformulation and Formulation 12

1.8 Solid-Lipid Nanoparticles 15

1.9 Learning Before Doing and Quality by Design 16

1.10 Performance and Stability in Pharmaceutical Development 19

1.11 Moisture Uptake 20

1.12 Solid-state Reactions 21

1.13 Noninteracting Formulations - Physical Characterizations 21

2 Polymorphs 27

2.1 Introduction 27

2.2 How Are Polymorphs Formed? 27

2.3 Structural Aspect of Polymorphs 29

2.3.1 Configurational Polymorphs 29

2.3.2 Conformational Polymorphs 30

2.4 Physical, Chemical, and Mechanical Properties 32

2.4.1 Solubility 33

2.4.2 Chemical Stability 34

2.4.3 Mechanical Properties 34

2.5 Thermodynamic Stability of Polymorphs 35

2.5.1 Monotropy and Enantiotropy 36

2.5.2 Burger and Ramberger's Rules 37

2.5.3 van't Hoff Plot 37

2.5.4 ​∆G​/temperature diagram 38

2.6 Polymorph Conversion 39

2.6.1 Solution-mediated Transformation 40

2.6.2 Solid-state Conversion 40

2.7 Control of Polymorphs 42

2.8 Polymorph Screening 43

2.9 Polymorph Prediction 44

3 Pseudopolymorphs: Hydrates and Solvates 49

3.1 Introduction 49

3.2 Pharmaceutical Importance of Hydrates 49

3.3 Classification of Pharmaceutical Hydrates 51

3.4 Water Activity 52

3.5 Stoichiometric Hydrates 53

3.6 Nonstoichiometric Hydrates 54

3.7 Emerging Interests in Organic Solvates 55

3.8 Isostructural Solvates 57

3.9 Dehydration and Desolvation 59

3.10 Preparation and Characterization of Hydrates and Solvates 61

4 Pharmaceutical Salts 65

4.1 Introduction 65

4.2 Importance of Pharmaceutical Salts 65

4.3 Weak Acid, Weak Base, and Salt 66

4.4 pH Solubility Profiles of Ionizable Compounds 69

4.5 Solubility, Dissolution, and Bioavailability of Pharmaceutical Salts 71

4.6 Physical Stability of Pharmaceutical Salts 75

4.7 Strategies for Salt Selection 76

5 Pharmaceutical Cocrystals 81

5.1 Introduction 81

5.2 Cocrystals and Crystal Engineering 81

5.3 Solubility Phase Diagrams for Cocrystals 83

5.4 Preparation of Cocrystals 85

5.5 Dissolution and Bioavailability of Cocrystals 88

5.6 Pharmaceutical Applications of Cocrystals 90

5.7 Comparison of Pharmaceutical Salts and Cocrystals 92

5.7.1 Formation 93

5.7.2 Preparation 93

5.7.3 Polymorphism and Pseudopolymorphism 93

5.7.4 Characterization 93

5.7.5 Stability 93

5.7.6 Formulation 94

5.7.7 Regulatory 94

6 Amorphous Solids 97

6.1 Introduction 97

6.2 The Formation of Amorphous Solids 98

6.3 Methods of Preparing Amorphous Solids 99

6.4 The Glass Transition Temperature 100

6.5 Structural Features of Amorphous Solids 103

6.6 Molecular Mobility 105

6.6.1 Overview of Molecular Mobility 105

6.6.2 Viscosity and Molecular Mobility 106

6.6.3 Relaxation Time 107

6.6.4 Fragility in Supercooled Liquids 108

6.6.5 Diffusive Relaxation Time in the Glassy State 110

6.6.6 Secondary Relaxations in Amorphous Solids 112

6.7 Mixtures of Amorphous Solids 114

6.7.1 Overview 114

6.7.2 Thermodynamics of Molecular Mixing in Amorphous Solids 115

6.7.3 The Glass Transition Temperature and Molecular Mobility of Miscible Amorphous Mixtures 116

7 Crystal Mesophases and Nanocrystals 121

7.1 Introduction 121

7.2 Overview of Crystal Mesophases 121

7.3 Liquid Crystals 122

7.4 Conformationally Disordered (Condis) Crystals 127

7.5 Plastic Crystals 127

7.6 Nanocrystals 128

8 X-Ray Crystallography and Crystal-Packing Analysis 131

8.1 Introduction 131

8.2 Crystals 131

8.3 Miller Indices and Crystal Faces 131

8.4 Determination of the Miller Indices of the Faces of a Crystal 133

8.5 Determination of Crystal Structure 134

8.5.1 Diffraction of X-Rays 134

8.5.2 Experimental Measurements 135

8.5.3 Determination of Space Group Symmetry 136

8.5.4 Calculation of the Density of the Crystal 136

8.5.5 Structure Determination 136

8.5.6 Crystal-packing Drawings 137

8.5.7 Atomic Displacement Parameters and Molecular Mobility 137

8.6 Variable-Temperature X-ray Studies 138

9 X-Ray Powder Diffraction 139

9.1 Introduction 139

9.2 XRPD of Crystalline Materials 139

9.3 Qualitative Analysis of Crystalline Materials 141

9.4 Phase Transformations 143

9.5 Quantitative Phase Analysis Using XRPD 143

9.6 Solving Crystal Structures Using XRPD 147

9.7 X-ray Diffraction of Amorphous and Crystal Mesophase Forms 149

9.8 Pair Distribution Function 149

9.9 X-ray Diffractometers 152

9.10 Variable Temperature XRPD 156

10 Differential Scanning Calorimetry and Thermogravimetric Analysis 159

10.1 Introduction 159

10.2 The Basics of DSC 159

10.3 Thermal Transitions of Pharmaceutical Materials 160

10.3.1 Melting 160

10.3.2 Glass Transition in Amorphous Solids 161

10.3.3 Enthalpy Relaxation for Amorphous Solids 161

10.3.4 Crystallization 162

10.3.5 Crystal Form Transitions 162

10.3.6 Desolvation/Dehydration 163

10.3.7 Chemical Degradation 163

10.4 DSC Instrumentation 163

10.4.1 Heat-flux DSC 163

10.4.2 Power-compensated DSC 164

10.4.3 Modulated DSC 164

10.4.4 Fast-scan DSC 165

10.4.5 Operation of DSC Instrumentation 165

10.5 Thermogravimetric Analysis 168

10.6 Operating a TGA Instrument 169

10.7 Evolved Gas Analysis 169

10.8 Applications of DSC and TGA 169

10.8.1 The Study of Polymorphs, Solvates, and Hydrates 169

10.8.2 Polymer Characterization 171

10.8.3 Characterization of Amorphous Forms and Amorphous Solid Dispersions 172

10.8.4 Dehydration and Desolvation Kinetics 172

10.8.5 Optimization of the Freezing-Drying Cycle in Lyophilization 173

10.8.6 Melting-point Depression Method for Purity Analysis and Drug-Polymer Miscibility Assessment 174

10.8.7 Study of Solid-state Chemical Stability 176

10.8.8 Characterization of Macromolecules and Their Interactions 176

10.9 Summary of Using DSC and TGA 178

11 Microscopy 181

11.1 Introduction 181

11.2 Light Microscopy 181

11.3 Polarized Light Microscopy 183

11.4 Thermal Microscopy 183

11.5 Functionality of Light Microscopy 184

11.6 Digital Microscope 185

11.7 Application of Light Microscopy to Pharmaceutical Materials 186

11.7.1 Differentiation of Amorphous and Crystalline Materials 186

11.7.2 Characterization of Polymorphs, Hydrates, and Solvates 186

11.7.3 Polymorph Conversion 189

11.7.4 Control of Crystallization 190

11.7.5 Screening for Cocrystals 191

11.7.6 Analysis of Particle Size 192

11.7.7 Contaminant Analysis 192

11.8 Scanning Electron Microscope 193

11.9 Environmental SEM 195

11.10 TEM and ED 196

11.11 Atomic Force Microscopy 198

12 Vibrational Spectroscopy 203

12.1 Introduction 203

12.2 The Nature of Molecular Vibrations 204

12.3 FT-IR Spectroscopy 205

12.4 Material Characterization by FT-IR Spectroscopy 206

12.5 FT-IR Instrumentation 208

12.6 Diffuse Reflectance FT-IR 209

12.7 Atr Ft-ir 211

12.8 FT-IR Microscopy 212

12.9 NIR Spectroscopy 213

12.10 Raman Spectroscopy 215

12.11 Raman Instrumentation and Sampling 217

12.12 Raman Microscopy 219

12.13 Terahertz Spectroscopy 220

12.14 Comparison of FT-IR, NIR, Raman, and Terahertz Spectroscopy 222

12.14.1 Spectral Information 222

12.14.2 Spectral Resolution 223

12.14.3 Sampling 223

12.14.4 Environmental Control 223

12.14.5 Microscopy 223

12.14.6 Fluorescence and Photodamage 224

13 Solid-State NMR Spectroscopy 227

13.1 Introduction 227

13.2 An Overview of Solid-state 13C CP/MAS NMR Spectroscopy 227

13.2.1 Dipolar Decoupling 228

13.2.2 Magic-Angle Spinning 231

13.2.3 Cross Polarization 232

13.3 Solid-state NMR Studies of Pharmaceuticals 232

13.4 Phase Identification in Dosage Forms 233

13.5 Other Basic Solid-state NMR Experiments Useful for Pharmaceutical Analysis 237

13.5.1 Interrupted Decoupling for Protonated Carbon Atoms 237

13.5.2 Block-Decay Experiments for Screening Submolecular Mobility 239

13.6 Determination of the Domain Structure of Amorphous Dispersions Using Solid-state NMR 241

13.7 Solid-state NMR of Amorphous Materials 242

13.8 Summary 244

14 Particle and Powder Analysis 247

14.1 Introduction 247

14.2 Particles in Pharmaceutical Systems 247

14.2.1 Micelles 247

14.2.2 Protein Aggregates 248

14.2.3 Liposomes 248

14.2.4 Microemulsions 248

14.2.5 Nanoemulsions 248

14.2.6 Nanosuspensions 249

14.2.7 Nanoparticles 249

14.2.8 Aerosols 249

14.2.9 Emulsions 249

14.2.10 Suspensions 249

14.2.11 Powders 249

14.2.12 Granules 250

14.2.13 Pellets 250

14.3 Particle Size and Shape 250

14.4 Particle Size Distribution 251

14.5 Dynamic Light Scattering 252

14.6 Zeta Potential 254

14.7 Laser Diffraction 256

14.8 Acoustic Spectroscopy 258

14.9 Dynamic Image Analysis 259

14.10 Sieve Analysis 260

14.11 Bulk Properties of Pharmaceutical Particulates and Powder 260

14.12 Surface Area Measurement 262

15 Hygroscopic Properties of Solids 267

15.1 Introduction 267

15.2 Water Vapor Sorption-Desorption 268

15.3 Water Vapor Sorption Isotherms, Relative Humidity, and Water Activity 268

15.4 Measurement of Water Content and Water Vapor Sorption-Desorption Isotherms 270

15.4.1 Measurement of Water Content 270

15.4.2 Measurement of Water Vapor Sorption-Desorption Isotherms 271

15.5 Modes of Water Vapor Sorption 272

15.5.1 Introduction 272

15.5.2 Adsorption 273

15.5.3 Deliquescence 277

15.5.4 Capillary Condensation 278

15.5.5 Absorption by Amorphous Solids 280

16 Mechanical Properties of Pharmaceutical Materials 287

16.1 Introduction 287

16.2 Stress and Strain 287

16.3 Elasticity 288

16.4 Plasticity 289

16.5 Viscoelasticity 290

16.6 Brittleness 291

16.7 Hardness 293

16.8 Powder Compression 294

16.9 Powder Compression Models and Compressibility 295

16.10 Compactibility and Tensile Strength 296

16.11 Effect of Solid Form on Mechanical Properties 297

16.12 Effect of Moisture on Mechanical Properties 299

16.13 Methods for Testing Mechanical Properties 301

16.13.1 Beam Bending 301

16.13.2 Thermomechanical Analyzer 302

16.13.3 Dynamic Mechanical Analyzer 303

16.13.4 Nanoindentation 304

17 Solubility and Dissolution 307

17.1 Introduction 307

17.2 Principal Concepts Associated with Solubility 307

17.3 Prediction of Aqueous Drug Solubility 308

17.4 Solubility of Pharmaceutical Solid Forms 310

17.5 Solubility Determination Using the Shake-Flask Method 311

17.6 High-throughput Screening of Solubility 312

17.7 Solubility Measurement of Metastable Forms 313

17.8 Kinetic Solubility Measurement 314

17.9 Solubility Determination of Drugs in Polymer Matrices 315

17.10 Dissolution Testing 316

17.11 Nonsink Dissolution Test 320

17.12 Biorelevant Dissolution Test 321

17.13 Intrinsic Dissolution Studies 324

17.14 Summary 325

18 Physical Stability of Solids 329

18.1 Introduction 329

18.2 Underlying Basis for Physical Instability in Pharmaceutical Systems 330

18.3 Disorder in Crystals 331

18.4 Quantitative Determination of Partially Amorphous Material in Crystals 333

18.5 Phase Transformation 335

18.5.1 Solid-state Crystallization 335

18.5.2 Solvent-mediated Phase Transformations 338

18.6 Examples of the Role of Process-induced Disorder in Solid-state Physical Instability in Pharmaceutical Systems 339

18.7 Poor Wettability of Solids During Dosage Form Processing and Administration 341

18.8 Considerations in Evaluating Solid-state Physical Stability 345

19 Chemical Stability of Solids 349

19.1 Introduction 349

19.2 Examples of Chemical Reactivity in the Solid State 349

19.3 Some General Principles That Establish the Rate of Chemical Reactions in Solution 352

19.4 Some General Principles Governing the Rates of Solid-state Reactions 355

19.5 The Role of Crystal Defects in Solid-state Reactions 356

19.6 Chemical Reactivity in the Amorphous Solid State 360

19.7 Chemical Reactivity and Processed-induced Disorder 363

19.8 The Effects of Residual Water on Solid-state Chemical Reactivity 364

19.9 Drug-Excipient Interactions 369

19.10 Summary 371

20 Solid-State Properties of Proteins 375

20.1 Introduction 375

20.2 Solution Properties of Proteins 375

20.3 Amorphous Properties of Proteins 379

20.4 Crystalline Properties of Proteins 381

20.5 Local Molecular Motions and the Dynamical Transitional Temperature, T d 382

20.6 Solid-state Physical and Chemical Stability of Proteins 384

20.7 Cryoprotection and Lyoprotection 385

21 Physical and Chemical Properties of RNA Therapeutics 389

21.1 Introduction 389

21.2 Mode of Action 389

21.2.1 Antisense RNA 390

21.2.2 Small Interference RNA 390

21.2.3 Messenger RNA 391

21.2.4 Crispr 392

21.3 Building Blocks and Primary Structure 392

21.4 RNA Structure in Solution 394

21.4.1 Hydrogen Bonding 395

21.4.2 Stacking Interaction 395

21.4.3 Ionic Interaction 395

21.4.4 RNA Secondary and Tertiary Structure 396

21.5 RNA Stability in Solution 398

21.6 Solid-state Properties 400

21.7 Pharmaceutical Development 402

21.7.1 Drug Delivery Challenges and Current Platforms 402

21.7.2 How to Make RNA Therapeutics 403

21.7.3 Characterization of mRNA LNPs 404

21.7.4 Stability of mRNA LNPs 406

21.7.5 Lyophilization of mRNA LNPs 407

21.8 Summary 408

22 Solid Form Selection of Active Pharmaceutical Ingredients 411

22.1 Introduction 411

22.2 Solid Form Selection 411

22.3 Amorphous Form Screening 413

22.4 Salt Selection 414

22.5 Cocrystal Screening 417

22.6 Polymorph Screening 419

22.7 Slurrying 420

22.8 High-Throughput Screening 421

22.9 Crystallization in Confined Space 422

22.10 Nonsolvent-based Polymorph Screening 423

22.11 Polymer-induced Heteronucleation 424

22.12 Physical Characterization 425

22.13 Thermodynamic Stability and Solid Form Selection 426

22.14 Summary 427

23 Final Stage Drug Substance Manufacturing and Control 431

23.1 Introduction 431

23.2 Crystallization and Impurity Purge 431

23.3 Removal of Residual Solvents 434

23.4 Control of Genotoxic Impurities 436

23.5 Control of N-Nitrosamines 437

23.6 Chiral Separation Through Salt and Cocrystal Formation 438

23.7 Preparation of the Final Solid Form 441

23.8 Particle Size and Shape Control During Crystallization 444

23.9 Powder Agglomeration and Caking 447

23.10 Milling and Micronization 448

23.11 Impact of Process Impurities on Crystallization 449

23.12 Summary 450

24 Solid-State Mixture Analysis 455

24.1 Introduction 455

24.2 Limitations of Wet Chemistry 455

24.3 Pharmaceutical Analysis in the Solid State 456

24.3.1 Sample Preparation 456

24.3.2 Data Collection 456

24.3.3 Data Transformation 457

24.3.4 Calibration Model Development and Validation 457

24.4 Measurement of Amorphous Content 459

24.5 Detection of Crystallinity 462

24.6 Quantification of Mixtures of Polymorphs 464

24.7 Salt and Free Form Composition 466

24.8 Analysis of Particulate Contaminants in Drug Products 467

24.9 Process Analytical Technology 470

24.9.1 Physical and Chemical Attributes of a Process 471

24.9.2 Selection of Process Analyzers 471

24.9.3 Location of the Process Analyzer 473

24.9.4 Development of Analytical Models for Process Monitoring 474

24.9.5 Validation 475

24.10 Summary 476

25 Drug Product Development 479

25.1 Chemistry, Manufacture, and Control 479

25.2 Preformulation 481

25.3 Drug-Excipient Compatibility 482

25.4 Solid Dispersions 484

25.5 Abuse-Deterrent Dosage Forms 489

25.6 Drug-Eluting Stents 491

25.7 Dry Powder Inhalers 494

25.8 Lyophilization of Biopharmaceutical Products 497

25.9 Oral Delivery of Peptides 500

25.10 Injectable Drug-Device Combination Products 502

25.11 Control of N-Nitrosamine in Drug Product 504

25.12 Summary 506

26 Quality by Design 511

26.1 Introduction 511

26.2 QbD Wheel 511

26.3 Learning Before Doing 514

26.4 Risk-based Orientation 516

26.5 API Attributes and Process Design 517

26.6 Development and Design Space 517

26.7 Process Design - Crystallization 520

26.8 Phase Transformations During Wet Granulation 521

26.9 Dissolution Tests with an IVIVC for QbD 522

26.10 Summary 525

Index 527

最近チェックした商品