Optimization in Sustainable Energy : Methods and Applications (Sustainable Computing and Optimization)

個数:
電子版価格
¥31,000
  • 電子版あり
  • ポイントキャンペーン

Optimization in Sustainable Energy : Methods and Applications (Sustainable Computing and Optimization)

  • ウェブストア価格 ¥48,786(本体¥44,351)
  • Wiley-Scrivener(2025/06発売)
  • 外貨定価 US$ 249.00
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 2,215pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 528 p.
  • 言語 ENG
  • 商品コード 9781394242108

Full Description

This state-of-the-art book offers cutting-edge optimization techniques and practical decision-making frameworks essential for enhancing the efficiency and reliability of sustainable energy systems, making it an invaluable resource for researchers, policymakers, and energy professionals.

Optimization in Sustainable Energy: Methods and Applications brings together valuable knowledge, methods, and practical examples to help scholars, researchers, professionals, and policymakers address the growing challenges of optimizing sustainable energy. This volume covers a range of topics, including mathematical models, heuristic algorithms, renewable resource management, and energy storage optimization. Each chapter explores a different aspect of sustainable energy, providing both theoretical understanding and practical guidance.

The volume explores challenges and opportunities surrounding the integration of multi-criteria decision-making techniques in energy planning, highlighting insights on environmental, economic, and social factors influencing the strategic allocation of resources. The use of evolutionary algorithms, machine learning, and metaheuristics to optimize energy storage, distribution, and optimization are also discussed.

The transition towards sustainable energy is at the forefront of global priorities, driven by the urgent need to mitigate climate change, reduce carbon emissions, and enhance energy security. As countries and industries increasingly prioritize renewable sources like wind, solar, and hydroelectric power, the complexity of optimizing these systems becomes a critical challenge. Optimization in Sustainable Energy: Methods and Applications, is a comprehensive exploration of cutting-edge methodologies used to enhance the efficiency, reliability, and performance of sustainable energy systems.

Audience

Research scholars, academics, students, policymakers, and industry experts in mechanical engineering, electrical engineering, and energy science.

Contents

Preface xvii

Acknowledgment xxi

Part I: Multi-Criteria Optimization and Strategic Planning in Sustainable Energy 1

1 Strategic Roadmap for Turkey's Sustainable Energy Transition: A Multi-Criteria Perspective 3
Gülay Demir and Prasenjit Chatterjee

1.1 Introduction 4

1.2 Literature Review 6

1.3 Methodology for Research 8

1.4 Results 14

1.5 Discussion, Practical and Managerial Implications 21

1.6 Conclusions, Limitations, and Future Directions 21

2 A Novel p, q-Quasirung Orthopair Fuzzy Group Decision-Making Framework for Selection of Renewable Energy Sources 27
Sanjib Biswas, Gülay Demir and Prasenjit Chatterjee

2.1 Introduction 28

2.2 Literature Review 30

2.3 Preliminary Concepts: p, q-QOFS 32

2.4 Fairly Operations and p, q-QOFS Weighted Fairly Aggregation 35

2.5 Materials and Methods 42

2.6 Findings 50

2.7 Discussions 56

2.8 Conclusion and Future Scope 58

3 Evaluating Carbon Footprint Reduction Strategies: A Fuzzy Multi-Criteria Decision-Making Approach 69
Gülay Demir and Prasenjit Chatterjee

3.1 Introduction 70

3.2 Literature Review 78

3.3 Research Methodology 81

3.4 Case Study 87

3.5 Insights, Applications, and Managerial Implications 105

3.6 Conclusions, Limitations, and Future Directions 108

4 Prioritizing Sustainable Energy Strategies Using Multi-Criteria Decision-Making Models in Type-2 Neutrosophic Environment 113
Ömer Faruk Görcün, Hande Kücükönder and Ahmet Calik

4.1 Introduction 114

4.2 The Research Background 116

4.3 The Suggested Model 129

4.4 Implementing the Model to Identify the Best Sustainable Energy Strategy 142

4.5 Results and Discussions 167

4.6 Conclusions and Future Research Direction 171

5 ENTROPY-Based Evaluation of Global Renewable Energy Trends 183
Rahim Arslan

5.1 Introduction 183

5.2 Renewable Energy Concepts 185

5.3 World Countries and Türkiye in Clean Energy 187

5.4 Evaluation of Renewable Energy Resources Using MCDM Methods 189

5.5 ENTROPY Method 189

5.6 Case Study 192

5.7 Conclusions 204

Part II: Optimization Techniques in Sustainable Energy 207

6 Optimization in Sustainable Energy: A Bibliometric Analysis 209
Rajeev Ranjan, Sonu Rajak, Prasenjit Chatterjee and Divesh Chauhan

6.1 Introduction 210

6.2 Optimization in Sustainable Energy 212

6.3 Materials and Methods 217

6.4 The Optimization Results in Sustainable Energy by Bibliometric Analysis 219

6.5 Discussions 233

6.6 Conclusions 235

7 A Novel Optimization-Based Cooling System for Improving Efficacy of Solar Panels Under Changing Climatic Conditions 241
J. Sivakumar, A. G. Karthikeyan, R. Karthikeyan and R. Girimurugan

7.1 Introduction 242

7.2 Solar PV 242

7.3 Hybrid PV Panel 247

7.4 Optimization 248

7.5 Conventional Optimization Approaches 249

7.6 Proposed Optimization Algorithm 258

7.7 Conclusion 260

8 Multi-Objective Optimization in Sustainable Energy 267
Sevtap Tirink

8.1 Introduction 268

8.2 Sustainable Development and Energy Sustainability 269

8.3 Sustainable Energy System Models 271

8.4 Foundations of Multi-Objective Optimization 276

8.5 Challenges and Future Directions in Multi-Objective Optimization for Sustainable Energy 281

8.6 Conclusions 282

9 Data Analytics for Performance Optimization in Renewable Energy 291
Aparna Unni and Harpreet Kaur Channi

9.1 Introduction 292

9.2 Literature Review 294

9.3 Renewable Energy Technologies 296

9.4 Statistical Modeling 300

9.5 Methodology 302

9.6 Challenges and Opportunities 305

9.7 Application Areas of Data Analytics in Renewable Energy 309

9.8 Real-Time Implementation Using PVsyst 314

9.9 Top World-Level Case Studies 316

9.10 Conclusion 323

10 Integration of Smart Grids in Energy Optimization 329
Harpreet Kaur Channi, Ramandeep Sandhu and Aayush Anand

10.1 Introduction 330

10.2 Smart Grid Fundamentals 333

10.3 Demand-Side Management 337

10.4 Data Analytics in Smart Grid 341

10.5 Smart Grid Deployment Worldwide 346

10.6 Conclusion 352

11 Markov Model-Based Reliability Evaluation of Multiport Converter Fed Induction Motor Drive for Electric Vehicle Applications 357
Manas Taneja and Dheeraj Joshi

11.1 Introduction 357

11.2 Markov's Modeling 359

11.3 Thermal Model 361

11.4 Transition Rate Evaluation 362

11.5 Genetic Algorithm 364

11.6 Reliability Calculations 365

11.7 Conclusion 369

12 Forecasting Wind Energy Produced from Wind Turbine: A Markov Chain-Based Approach 373
Yasin Atci and Sibel Atan

12.1 Introduction 373

12.2 Literature Review 375

12.3 Wind Energy 376

12.4 Markov Processes 383

12.5 Wind Energy Forecasting with Markov Chains 388

12.6 Conclusions and Recommendations 399

13 Efficient Optimization Techniques for Renewable and Sustainable Energy Systems 405
Swati Sharma and Ikbal Ali

13.1 Introduction 406

13.2 Renewable Energy Approaches: An Introductory Overview 407

13.3 Efficiency Unbound: Unconstrained Optimization Techniques for Renewable Energy Systems 420

13.4 Enhancing Renewable Energy Efficiency: Constrained Optimization Methods 433

13.5 Conclusions and Discussion 455

14 Energy Optimization: Challenges, Issues, and Role of Machine Learning Techniques 465
Anshuka Bansal, Ashwani Kumar Aggarwal and Anita Khosla

14.1 Introduction 466

14.2 Challenges in Energy Optimization 468

14.3 Energy Optimization Methods 470

14.4 Role of Machine Learning Methods 473

14.5 Machine Learning Models 475

14.6 Conclusions 478

References 479

Index 487

最近チェックした商品