Generative Artificial Intelligence : Concepts and Applications (Industry 5.0 Transformation Applications)

個数:
電子版価格
¥23,969
  • 電子版あり

Generative Artificial Intelligence : Concepts and Applications (Industry 5.0 Transformation Applications)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 304 p.
  • 言語 ENG
  • 商品コード 9781394209224
  • DDC分類 006.3

Full Description

This book is a comprehensive overview of AI fundamentals and applications to drive creativity, innovation, and industry transformation.

Generative AI stands at the forefront of artificial intelligence innovation, redefining the capabilities of machines to create, imagine, and innovate. GAI explores the domain of creative production with new and original content across various forms, including images, text, music, and more. In essence, generative AI stands as evidence of the boundless potential of artificial intelligence, transforming industries, sparking creativity, and challenging conventional paradigms. It represents not just a technological advancement but a catalyst for reimagining how machines and humans collaborate, innovate, and shape the future.

The book examines real-world examples of how generative AI is being used in a variety of industries. The first section explores the fundamental concepts and ethical considerations of generative AI. In addition, the section also introduces machine learning algorithms and natural language processing. The second section introduces novel neural network designs and convolutional neural networks, providing dependable and precise methods. The third section explores the latest learning-based methodologies to help researchers and farmers choose optimal algorithms for specific crop and hardware needs. Furthermore, this section evaluates significant advancements in revolutionizing online content analysis, offering real-time insights into content creation for more interactive processes.

Audience
The book will be read by researchers, engineers, and students working in artificial intelligence, computer science, and electronics and communication engineering as well as industry application areas.

Contents

Preface xiii

1 Exploring the Creative Frontiers: Generative AI Unveiled 1
Generated Using ChatGPT

1.1 Introduction 1

1.1.1 Definition and Significance of Generative AI 1

1.1.2 Historical Overview and Development 2

1.2 Foundational Concepts 4

1.2.1 Neural Networks and Generative Models 4

1.2.2 Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) 5

1.3 Applications Across Domains 7

1.3.1 Creative Arts: Music, Visual Arts, Literature 7

1.3.2 Content Generation: Text, Images, Videos 8

1.3.3 Scientific Research and Data Augmentation 9

1.3.4 Healthcare and Drug Discovery 10

1.3.5 Gaming and Virtual Environments 12

1.4 Ethical Considerations 13

1.5 Future Prospects and Challenges 15

1.6 Conclusion 16

Reference 17

2 An Efficient Infant Cry Detection System Using Machine Learning and Neuro Computing Algorithms 19
Swarna Kuchibhotla, Kantheti Mohana, Alapati Yomitha, Sruthi Yedavalli, Hima Deepthi Vankayalapati and Kyamakya Kyandoghere

2.1 Introduction 20

2.2 Literature Survey 21

2.3 Methodology 23

2.3.1 Database 24

2.3.2 Feature Extraction 25

2.3.2.1 Short-Term Energy 25

2.3.2.2 Mel-Frequency Cepstral Coefficients 26

2.3.2.3 Spectrograms 27

2.3.3 Classification 29

2.3.4 Convolutional Neural Network (CNN) 29

2.3.5 Recurrent Neural Network (RNN) 31

2.3.6 Regularized Discriminant Analysis (RDA) 31

2.3.7 Multi-Layer Perceptron (MLP) 33

2.4 Experimental Results 33

2.5 Conclusion 35

References 35

3 Improved Brain Tumor Segmentation Utilizing a Layered CNN Model 39
Bilal Hikmat Rasheed and P. Sudhakaran

3.1 Introduction 40

3.2 Related Works 41

3.3 Methodology 42

3.4 Numerical Results 45

3.5 Conclusion 49

References 49

4 Natural Language Processing in Generative Adversarial Network 53
P. Dhivya, A. Karthikeyan, S. Pradeep and H. Umamaheswari

4.1 Introduction 54

4.2 Literature Survey 57

4.3 The Implementation of NLP in GAN for Generating Images and Summaries 61

4.3.1 Working of Sequence Generative Adversarial Network (SeqGAN) 61

4.3.2 Working of Generative Adversarial Transformer (GAT) 63

4.3.2.1 Steps to Incorporate NLP in GAN 64

4.3.3 Implementation of NLP in GAN 65

4.3.4 Generate the Image Using Textual Description 68

4.3.5 Text Summarization 69

4.3.5.1 Graph-Based Summarization 71

4.4 Conclusion 77

References 77

5 Modeling A Deep Learning Network Model for Medical Image Panoptic Segmentation 81
Jyothsna Devi Koppagiri and Gouranga Mandal

5.1 Introduction 81

5.2 Related Works 84

5.3 Methodology 85

5.3.1 Deep Masking Convolutional Model (DMCM) 85

5.4 Numerical Results and Discussion 87

5.5 Conclusion 91

References 91

6 A Hybrid DenseNet Model for Dental Image Segmentation Using Modern Learning Approaches 93
Pulipati Nagaraju and S. V. Sudha

6.1 Introduction 94

6.2 Related Works 95

6.3 Methodology 96

6.3.1 Dataset 96

6.3.2 Dense Transformer Model 97

6.3.3 DenseNet Model 100

6.4 Numerical Results and Discussion 100

6.4.1 Discussion 103

6.5 Conclusion 104

References 104

7 Modeling A Two-Tier Network Model for Unconstraint Video Analysis Using Deep Learning 107
P. Naga Bhushanam and Selva Kumar S.

7.1 Introduction 108

7.2 Related Works 109

7.3 Methodology 110

7.4 Numerical Results and Discussion 113

7.5 Conclusion 117

References 118

8 Detection of Peripheral Blood Smear Malarial Parasitic Microscopic Images Utilizing Convolutional Neural Network 121
Tamal Kumar Kundu, Smritilekha Das and R. Nidhya

8.1 Introduction 122

8.2 Malaria 124

8.2.1 Malaria-Infected Red Blood Cells with Types 124

8.3 Literature Survey 125

8.4 Proposed Methodology and Algorithm 130

8.4.1 Proposed Algorithm 135

8.5 Result Analysis 135

8.5.1 Dataset 135

8.5.2 Preprocessing of Data 135

8.5.3 Splitting of Dataset 137

8.5.4 Classification 137

8.5.5 Model Prediction and Performance Metrics 137

8.5.6 CNN Learning Curves 138

8.6 Discussion 139

8.7 Conclusion 139

8.8 Future Scope 139

References 140

9 Exploring the Efficacy of Generative AI in Constructing Dynamic Predictive Models for Cybersecurity Threats: A Research Perspective 143
T. Manasa and K. Padmanaban

9.1 Introduction 144

9.2 Related Works 145

9.3 Methodology 146

9.3.1 Pre-Processing 147

9.3.2 Classifier 147

9.3.3 Optimization 148

9.4 Numerical Results and Discussion 149

9.5 Conclusion 152

References 152

10 Poultry Disease Detection: A Comparative Analysis of CNN, SVM, and YOLO v3 Algorithms for Accurate Diagnosis 155
Spoorthi Shetty and Mangala Shetty

10.1 Introduction 156

10.2 Literature Review 157

10.3 Objectives 158

10.3.1 Accurate Disease and Early Disease Identification 158

10.3.2 Multi-Class Disease Identification 158

10.3.3 Automation and Real-Time Disease Monitoring 159

10.3.4 Better Accuracy 159

10.4 Methodology 159

10.4.1 Dataset 159

10.4.2 Data Preprocessing 160

10.4.3 Image Preprocessing 161

10.4.4 Data Augmentation 161

10.4.5 Extracting Region of Interest 162

10.5 Results and Discussion 165

10.6 Conclusion 169

References 170

11 Generative AI-Enhanced Deep Learning Model for Crop Type Analysis Based on Clustered Feature Vectors and Remote Sensing Imagery 173
B. Bazeer Ahamed, D. Yuvaraj and Saif Saad Alnuaimi

11.1 Introduction 174

11.2 Related Works 176

11.3 Methodology 178

11.3.1 Saliency Analysis 180

11.3.2 Saliency Region Analysis with Belief Networking 181

11.3.3 Group Analysis 182

11.3.4 Classification 183

11.3.5 Parameter Setup 183

11.4 Numerical Results and Discussion 184

11.4.1 Dataset 186

11.4.2 Classification Results and Discussions 187

11.5 Conclusion 190

References 193

12 Cardiovascular Disease Prediction with Machine Learning: An Ensemble-Based Regressive Neighborhood Model 197
Yuvaraj Duraisamy, Salar Faisal Noori and Shakir Mahoomed Abas

12.1 Introduction 197

12.2 Related Works 200

12.3 Methodology 200

12.3.1 Pre-Processing 200

12.3.2 Feature Selection 202

12.3.3 Classification 202

12.4 Numerical Results and Discussion 203

12.5 Conclusion 206

References 207

13 Detection of IoT Attacks Using Hybrid RNN-DBN Model 209
Pavithra D., Bharathraj R., Poovizhi P., Libitharan K. and Nivetha V.

13.1 Introduction 210

13.2 Related Work 212

13.3 Methodology 216

13.3.1 Dataset Used 216

13.3.2 Data Preprocessing 217

13.3.3 Data Normalization 217

13.3.4 Multi-Class Classification 218

13.3.5 Splitting Dataset 219

13.3.6 RNN-DBN 219

13.4 Experiments and Results 221

13.5 Conclusion and Future Scope 224

References 224

14 Identification of Foliar Pathologies in Apple Foliage Utilizing Advanced Deep Learning Techniques 227
Tamal Kumar Kundu, Smritilekha Das and R. Nidhya

14.1 Introduction 228

14.2 Literature Survey 229

14.2.1 Disease Detection Using Machine and Deep Learning Techniques (2015-2021) 229

14.2.2 Disease Detection Using Transfer Learning (2015-2021) 232

14.3 Different Diseases of Leaves 233

14.4 Dataset 236

14.5 Proposed Methodology 239

14.6 Data Analysis 240

14.7 Pre-Processing Technique 241

14.8 Data Visualization 242

14.9 Evolutionary Progression and Genesis of Model 242

14.9.1 Evolution Model 243

14.9.2 Model Performance 244

References 246

15 Enhancing Cloud Security Through AI-Driven Intrusion Detection Utilizing Deep Learning Methods and Autoencoder Technology 249
P.V. Sivarambabu, Richa Agrawal, Arepalli Tirumala, Shaik Mahaboob Subani, Veeraswamy Parisae and S. V. L. Sowjanya Nukala

15.1 Introduction 250

15.2 Related Work 251

15.3 Proposed Methodology 253

15.3.1 DL-Based IDS for Cloud Security 253

15.4 Results and Discussion 254

15.4.1 Performance Analysis 258

15.4.1.1 Accuracy 259

15.4.1.2 Precision 260

15.4.1.3 Recall 260

15.4.1.4 F1 Score 261

15.4.1.5 AUC-Area Under the Curve 261

15.5 Conclusion 262

References 262

16 YouTube Comment Analysis Using LSTM Model 265
Pavithra D., Poovizhi P., Rokeshkumar G., Bharathvaj T. and Mageshkumar M.

16.1 Introduction 266

16.2 Related Work 266

16.3 Literature Survey 267

16.4 Existing System 272

16.5 Methodology 273

16.6 Result and Discussion 275

16.7 Conclusion 280

References 280

Index 283

最近チェックした商品