測度と積分の反例<br>Counterexamples in Measure and Integration

個数:

測度と積分の反例
Counterexamples in Measure and Integration

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 330 p.
  • 言語 ENG
  • 商品コード 9781316519134
  • DDC分類 515.42

Full Description

Often it is more instructive to know 'what can go wrong' and to understand 'why a result fails' than to plod through yet another piece of theory. In this text, the authors gather more than 300 counterexamples - some of them both surprising and amusing - showing the limitations, hidden traps and pitfalls of measure and integration. Many examples are put into context, explaining relevant parts of the theory, and pointing out further reading. The text starts with a self-contained, non-technical overview on the fundamentals of measure and integration. A companion to the successful undergraduate textbook Measures, Integrals and Martingales, it is accessible to advanced undergraduate students, requiring only modest prerequisites. More specialized concepts are summarized at the beginning of each chapter, allowing for self-study as well as supplementary reading for any course covering measures and integrals. For researchers, it provides ample examples and warnings as to the limitations of general measure theory. This book forms a sister volume to René Schilling's other book Measures, Integrals and Martingales (www.cambridge.org/9781316620243).

Contents

Preface; User's guide; List of topics and phenomena; 1. A panorama of Lebesgue integration; 2. A refresher of topology and ordinal numbers; 3. Riemann is not enough; 4. Families of sets; 5. Set functions and measures; 6. Range and support of a measure; 7. Measurable and non-measurable sets; 8. Measurable maps and functions; 9. Inner and outer measure; 10. Integrable functions; 11. Modes of convergence; 12. Convergence theorems; 13. Continuity and a.e. continuity; 14. Integration and differentiation; 15. Measurability on product spaces; 16. Product measures; 17. Radon-Nikodým and related results; 18. Function spaces; 19. Convergence of measures; References; Index.

最近チェックした商品