Intro Stats, Global Edition (6TH)

個数:

Intro Stats, Global Edition (6TH)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 848 p.
  • 言語 ENG
  • 商品コード 9781292470641

Full Description

For courses in Introductory Statistics.

Innovative methods, technology, and humor encourage statistical thinking

Intro Stats, 6th Edition by De Veaux/Velleman/Bock uses inventive strategies to help students think critically about data, while maintaining the book's core concepts, coverage, and readability. By using technology and simulations to demonstrate variability at critical points throughout the course, the authors make it easier for instructors to teach and for students to understand more complicated statistical concepts later in the course.

This revision includes several enhancements, enriching material with greater use of the authors' signature tools for teaching about randomness, sampling distribution models, and inference. Current discussions of ethical issues have been added throughout, and each chapter now ends with a student project that can be used for collaborative work.

Contents

* Indicates optional section

I: EXPLORING AND UNDERSTANDING DATA

Stats Starts Here

1.1 What Is Statistics?
1.2 Data
1.3 Variables
1.4 Models

Displaying and Describing Data

2.1 Summarizing and Displaying a Categorical Variable
2.2 Displaying a Quantitative Variable
2.3 Shape
2.4 Center
2.5 Spread

Relationships Between Categorical Variables: Contingency Tables

3.1 Contingency Tables
3.2 Conditional Distributions
3.3 Displaying Contingency Tables
3.4 Three Categorical Variables

Understanding and Comparing Distributions

4.1 Displays for Comparing Groups
4.2 Outliers
4.3 Re-Expressing Data: A First Look

The Standard Deviation as a Ruler and the Normal Model

5.1 Using the standard deviation to Standardize Values
5.2 Shifting and Scaling
5.3 Normal Models
5.4 Working with Normal Percentiles
5.5 Normal Probability Plots



Review of Part I: Exploring and Understanding Data

II: EXPLORING RELATIONSHIPS BETWEEN VARIABLES

Scatterplots, Association, and Correlation

6.1 Scatterplots
6.2 Correlation
6.3 Warning: Correlation ≠ Causation
6.4 *Straightening Scatterplots

Linear Regression

7.1 Least Squares: The Line of "Best Fit"
7.2 The Linear Model
7.3 Finding the Least Squares Line
7.4 Regression to the Mean
7.5 Examining the Residuals
7.6 R2: The Variation Accounted for by the Model
7.7 Regression Assumptions and Conditions

Regression Wisdom

8.1 Examining Residuals
8.2 Extrapolation: Reaching Beyond the Data
8.3 Outliers, Leverage, and Influence
8.4 Lurking Variables and Causation
8.5 Working with Summary Values
8.6 * Straightening Scatterplots: The Three Goals
8.7 * Finding a Good Re-Expression

Multiple Regression

9.1 What Is Multiple Regression?
9.2 Interpreting Multiple Regression Coefficients
9.3 The Multiple Regression Model: Assumptions and Conditions
9.4 Partial Regression Plots
9.5 * Indicator Variables



Review of Part II: Exploring Relationships Between Variables

III: GATHERING DATA

Sample Surveys

10.1 The Three Big Ideas of Sampling
10.2 Populations and Parameters
10.3 Simple Random Samples
10.4 Other Sampling Designs
10.5 From the Population to the Sample: You Can't Always Get What You Want
10.6 The Valid Survey
10.7 Common Sampling Mistakes, or How to Sample Badly

Experiments and Observational Studies

11.1 Observational Studies
11.2 Randomized, Comparative Experiments
11.3 The Four Principles of Experimental Design
11.4 Control Groups
11.5 Blocking
11.6 Confounding



Review of Part III: Gathering Data

IV: FROM THE DATA AT HAND TO THE WORLD AT LARGE

From Randomness to Probability

12.1 Random Phenomena
12.2 Modeling Probability
12.3 Formal Probability
12.4 Conditional Probability and the General Multiplication Rule
12.5 Independence
12.6 Picturing Probability: Tables, Venn Diagrams, and Trees
12.7 Reversing the Conditioning and Bayes' Rule

Sampling Distributions and Confidence Intervals for Proportions

13.1 The Sampling Distribution for a Proportion
13.2 When Does the Normal Model Work? Assumptions and Conditions
13.3 A Confidence Interval for a Proportion
13.4 Interpreting Confidence Intervals: What Does 95% Confidence Really Mean?
13.5 Margin of Error: Certainty vs. Precision
13.6 * Choosing the Sample Size

Confidence Intervals for Means

14.1 The Central Limit Theorem
14.2 A Confidence interval for the Mean
14.3 Interpreting confidence intervals
14.4 * Picking our Interval Up by our Bootstraps
14.5 Thoughts about Confidence Intervals

Testing Hypotheses

15.1 Hypotheses
15.2 P-values
15.3 The Reasoning of Hypothesis Testing
15.4 A Hypothesis Test for the Mean
15.5 Intervals and Tests
15.6 P-Values and Decisions: What to Tell About a Hypothesis Test

More About Tests and Intervals

16.1 Interpreting P-values
16.2 Alpha Levels and Critical Values
16.3 Practical vs. Statistical Significance
16.4 Errors



Review of Part IV: From the Data at Hand to the World at Large

V: INFERENCE FOR RELATIONSHIPS

Comparing Groups

17.1 A Confidence Interval for the Difference Between Two Proportions
17.2 Assumptions and Conditions for Comparing Proportions
17.3 The Two-Sample z-Test: Testing the Difference Between Proportions
17.4 A Confidence Interval for the Difference Between Two Means
17.5 The Two-Sample t-Test: Testing for the Difference Between Two Means
17.6 * Randomization-Based Tests and Confidence Intervals for Two Means
17.7 * Pooling
17.8 * The Standard Deviation of a Difference

Paired Samples and Blocks

18.1 Paired Data
18.2 The Paired t-Test
18.3 Confidence Intervals for Matched Pairs
18.4 Blocking

Comparing Counts

19.1 Goodness-of-Fit Tests
19.2 Chi-Square Tests of Homogeneity
19.3 Examining the Residuals
19.4 Chi-Square Test of Independence

Inferences for Regression

20.1 The Regression Model
20.2 Assumptions and Conditions
20.3 Regression Inference and Intuition
20.4 The Regression Table
20.5 Multiple Regression Inference
20.6 Confidence and Prediction Intervals
20.7 * Logistic Regression
20.8 * More About Regression



Review of Part V: Inference for Relationships

Parts I-V Cumulative Review Exercises Appendixes:

Answers
Credits
Indexes
Tables and Selected Formulas

最近チェックした商品