Applied Numerical Methods with Python for Engineers and Scientists ISE

個数:

Applied Numerical Methods with Python for Engineers and Scientists ISE

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 674 p.
  • 言語 ENG
  • 商品コード 9781265017965

Full Description

Applied Numerical Methods with Python, 1st Edition is written for students who want to learn and apply numerical methods in order to solve problems in engineering and science. As such, the methods are motivated by problems rather than by mathematics. That said, sufficient theory is provided so that students come away with insight into the techniques and their shortcomings. If you've ever used Applied Numerical Methods for MATLAB, you'll find transitioning to this Python program seamless! No prior experience with Python is required. 

McGraw Hill Connect, is available with this title. In addition to providing the MHeBook, Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need, when they need it, how they need it, so that class time is more effective. Connect enables professors to assign homework, quizzes, and tests easily and automatically grades and records the scores of the student's work.

Contents

1 Mathematical Modeling, Numerical Methods, and Problem Solving
2 MATLAB Fundamentals
3 Programming with MATLAB
4 Roundoff and Truncation Errors
5 Roots: Bracketing Methods
6 Roots: Open Methods
7 Optimization
8 Linear Algebraic Equations and Matrices
9 Gauss Elimination
10 LU Factorization
11 Matrix Inverse and Condition
12 Iterative Methods
13 Eigenvalues
14 Linear Regression
15 General Linear Least-Squares and Nonlinear Regression
16 Fourier Analysis
17 Polynomial Interpolation
18 Splines and Piecewise Interpolation
19 Numerical Integration Formulas
20 Numerical Integration of Functions
21 Numerical Differentiation
22 Initial-Value Problems
23 Adaptive Methods and Stiff Systems
24 Boundary-Value Problems

Appendix A: Matplotlib
Appendix B: Cubic Spline Smoothing
Appendix C: Python Built-in Keywords: Functions, Methods, Operators, Types
Appendix D: Python Functions and Scripts Presented in the Text
Bibliography
Index
Accessibility Content: Text Alternatives for Images

最近チェックした商品