一般化線形モデル入門(第4版)<br>An Introduction to Generalized Linear Models (Chapman & Hall/crc Texts in Statistical Science) (4TH)

個数:

一般化線形モデル入門(第4版)
An Introduction to Generalized Linear Models (Chapman & Hall/crc Texts in Statistical Science) (4TH)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 392 p.
  • 言語 ENG
  • 商品コード 9781138741683
  • DDC分類 519.535

Full Description

An Introduction to Generalized Linear Models, Fourth Edition provides a cohesive framework for statistical modelling, with an emphasis on numerical and graphical methods. This new edition of a bestseller has been updated with new sections on non-linear associations, strategies for model selection, and a Postface on good statistical practice.

Like its predecessor, this edition presents the theoretical background of generalized linear models (GLMs) before focusing on methods for analyzing particular kinds of data. It covers Normal, Poisson, and Binomial distributions; linear regression models; classical estimation and model fitting methods; and frequentist methods of statistical inference. After forming this foundation, the authors explore multiple linear regression, analysis of variance (ANOVA), logistic regression, log-linear models, survival analysis, multilevel modeling, Bayesian models, and Markov chain Monte Carlo (MCMC) methods.




Introduces GLMs in a way that enables readers to understand the unifying structure that underpins them



Discusses common concepts and principles of advanced GLMs, including nominal and ordinal regression, survival analysis, non-linear associations and longitudinal analysis



Connects Bayesian analysis and MCMC methods to fit GLMs



Contains numerous examples from business, medicine, engineering, and the social sciences



Provides the example code for R, Stata, and WinBUGS to encourage implementation of the methods



Offers the data sets and solutions to the exercises online



Describes the components of good statistical practice to improve scientific validity and reproducibility of results.

Using popular statistical software programs, this concise and accessible text illustrates practical approaches to estimation, model fitting, and model comparisons.

Contents

Introduction. Model Fitting. Exponential Family and Generalized. Linear Models.Estimation. Inference. Normal Linear Models. Binary Variables and Logistic Regression. Nominal and Ordinal Logistic Regression. Poisson Regression and Log-Linear Models.Survival Analysis. Clustered and Longitudinal Data. Bayesian Analysis. Markov Chain Monte Carlo Methods. Example Bayesian Analyses. Postface. Appendix.

最近チェックした商品